DEVELOPMENT OF NEUROTOXIC EFFECTS OF NEUROTROPHIC CHEMICALS
- Authors: Zaitseva N.V.1, Zemlianova M.A.1,2,3, Koldibekova Y.V1, Peskova E.V.1
-
Affiliations:
- Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
- Perm State National Research University
- Perm National Research Polytechnic University
- Issue: Vol 27, No 3 (2020)
- Pages: 47-53
- Section: Articles
- URL: https://journal-vniispk.ru/1728-0869/article/view/35094
- DOI: https://doi.org/10.33396/1728-0869-2020-3-47-53
- ID: 35094
Cite item
Full Text
Abstract
Exposure to neurotropic chemicals (benzene, toluene, xylene, aluminum, manganese, nickel, etc.) as a result of environmental pollution can exacerbate unmodifiable (burdened heredity) and modifiable (intrauterine infections during pregnancy, childbirth and the first week of a child's life) damage factors of central nervous system. The review considers some aspects of the development of negative effects when exposed to benzene, aluminum, manganese, nickel and copper. The present-day data of international and national studies devoted to the study of this problem in terms of the development of the toxic action of neurotoxicants are presented. The individual links of the development of pathological processes are considered, namely, violation of the generation, conduction and transmission of nerve impulses, neurogenesis as a result of activation of oxidative processes, potentiation of excitotoxicity, synaptic dysfunction and neuro-inflammation. The review provides a detailed description of the development of neurotoxic effects. It is shown that when exposed to benzene, an effect is formed in the form of a violation of the synaptic transmission of the nerve impulse associated with the development of oxidative stress in the nervous tissue. Manganese and aluminum oxides are capable of causing direct cytotoxic damage to neurons, followed by the formation of a neuroinflammatory response and disruption of the process of neurogenesis. The mechanism of development of synaptic dysfunction may be associated with the action of aluminum ions, zinc, iron and copper. The presented generalized materials on the etiopathogenetic effect of neurotropic chemicals allow to expand the scientific understanding of the mechanisms of the toxic effects of exogenous chemical environmental factors on the central nervous system.
Full Text
##article.viewOnOriginalSite##About the authors
N. V. Zaitseva
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Email: zem@fcrisk.ru
Perm
M. A. Zemlianova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies; Perm State National Research University; Perm National Research Polytechnic University
Email: zem@fcrisk.ru
доктор медицинских наук, зав. отделом биохимических и цитогенетических методов диагностики
PermYu. V Koldibekova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Email: zem@fcrisk.ru
Perm
E. V. Peskova
Federal Scientific Center for Medical and Preventive Health Risk Management Technologies
Author for correspondence.
Email: zem@fcrisk.ru
Perm
References
- Аманжол И. А., Аманбекова А. У., Баттакова Ш. Б., Омирбаева С. М., Ибраева Л. К., Аманбеков У. А., Шпаков А. Е., Ажиметова Г. Н., Сейлханова Ж., Фазылова М-Д. А., Миянова Г. А Современные проблемы экологически зависимых заболеваний населения урбанизированных территорий. Караганда, 2012. 200 с
- Бондаренко В. М. Воспаление и нейродегенеративные изменения в развитии хронической патологии центральной нервной системы // Медицинский вестник Юга России. 2011. № 4. С. 3-7
- Васенина Е. Е., Левина О. С. Окислительный стресс в патогенезе нейрогенеративных заболеваний: возможности терапии // Современная терапия в психиатрии и неврологии. 2013. № 3-4. С. 39-46
- Дубинина Е. Е., Щедрина Л. В., Незнанов Н. Г., Залуцкая Н. М., Захарченко Д. В. Окислительный стресс и его влияние на функциональную активность клеток при болезни Альцгеймера // Биомедицинская химия. 2015. Т. 61, № 1. С. 57-69
- Жданова-Заплесвичко И. Г., Землянова М. А., Кольдибекова Ю. В. Биомаркеры неканцерогенных негативных эффектов со стороны центральной нервной системы у детей в зоне влияния источников выбросов алюминиевого производства // Гигиена и санитария. 2018. Т. 97, № 5. С. 461-469
- Зайцева Н. В., Землянова М. А., Звездин В. Н., Акафьева Т. И., Саенко Е. В. Исследование острой токсичности аэрозоля нанодисперсного оксида марганца при ингаляционном поступлении // Российские нанотехнологии. 2015. Т. 10, № 5-6. С. 117-122
- Магомадова С. Р. Ноотропы как лекарственные средства, влияющие на высшие интегративные функции мозга детей, у которых выявлены неврологические заболевания // Молодой ученый. 2014. № 16. С. 118-121
- Обламская И. С., Карпенко М. Н. Нейровоспаление и гиперактивация кальпаинов клеток ЦНС, как последствия интоксикации солями марганца // Неделя науки СПбПУ: материалы науч.-практ. конф. СПб.: Изд-во Политехн. ун-та, 2015. С. 354-356
- Оценка влияния факторов среды обитания на здоровье населения Иркутской области: Информационно-аналитический бюллетень за 2017 год. Иркутск, 2018. 63 с
- Салмина А. Б., Окунева О. С., Таранушенко Т. Е., Фурсов А. А., Прокопенко С. В., Михуткина С. В., Малиновская Н. А., Тагаева Г. А. Роль нейрон-астроглиальных взаимодействий в дизрегуляции энергетического метаболизма при ишемическом перинатальном поражении головного мозга // Анналы клинической и экспериментальной неврологии. 2008. № 3. С. 44-51
- Смагина И. В., Ельчанинова С. А., Игнатова Ю. Н., Переверзева О. В., Ночевная О. М., Раевских В. М. Модифицируемые факторы, влияющие на течение рассеянного склероза // Неврологический журнал. 2013. № 4. С. 35-40
- Araque A., Navarrete M. Glial cells in neuronal network function. Phil. Trans. R. Soc. B. 2010, 365, рр. 2375-2381.
- Craft G. E., Chen A., Nairn A. C. Recent advances in quantitative neuroproteomics. Methods. 2013, 61, 3, рр. 186218. doi: 10.1016/j.ymeth.2013.04.008.
- Crittenden P. L., Fi^ov N. M. Manganese-induced potentiation of in vitro proinflammatory cytokine production by activated microglial cells is associated with persistent activation of р38 MAPK. Toxicology in Vitro. 2008, 22, рр. 18-27.
- Deloncle R., Guillard О., Clanet F., Courtois P., Piriou A. Aluminum transfer as glutamate complex through blood-brain barrier. Possible implication in dialysis encephalopathy. Biological Trace Element Research. 1990, 25, рр. 39-45.
- Dementia Fact Sheet. World Health Organization Media Centre. World Health Organization. 2016. Available at: https://www.who.int/en/news-room/fact-sheets/detail/ dementia (accessed: 01.04.2019)
- Elder A., Gelein R., Silva V, Feikert T., Opanashuk L., Carter J., Potter R., Maynard A., Ito Y., Finkelstein J., Oberdörster G. Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System. Environ. Health Perspectives. 2006, 114, рр. 1 172-1 178.
- Fitsanakis V., Au C., Erikson K., Aschner M. The effects of manganese on glutamate, dopamine and gammaaminobutyric acid regulation. Neurochem Int. 2006, 48 (6-7), рр. 426-433.
- Frick R., Müller-Edenborn B., Schlicker A., Rothen-Rutishauser B. Comparison of manganese oxide nanoparticles and manganese sulfate with regard to oxidative stress, uptake and apoptosis in alveolar epithelial cells. Toxicol Lett. 2011, 205, рр. 163-72. doi: 10.1016/j.toxlet.2011.05.1037
- Galvao R., Garcia-Verdugo J., Alvarez-Buylla A. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J. Neurosci. 2008, 28 (50), рр. 13368-13383.
- Guidelines for Neurotoxicity Risk Assessment (Published on May 14, 1998, Federal Register 63(93):26926-26954) Risk Assessment Forum. U.S. Environmental Protection Agency Washington, DC EPA/630/R-95/001F April 1998. 79 р.
- Halliwell B., Packer L., Prilipco L., Christen Y. Reactive Oxygen Species and the Central Nervous System. Free Radical in the Brain. 1992, рр. 21-40. doi: 10.1007/978-3-642-77609-0_2.
- Hodgson E. A textbook of modern toxicology third edition. 2004, John Wiley & Sons, Inc., 543 р.
- Horvath E., Mate Z., Takacs S., Pusztai P. General and electrophysiological toxic effects of manganese in rats following subacute administration in dissolved and nanoparticle form. The Scientific World Journal. 2012, 1-7. Doi:10.1 100/2012/520632.
- Kerschensteiner M., Gallmeier E., Behrens L., Leal V. V., Misgeld T., Klinkert W. E., Kolbeck R., Hoppe E., Oropeza-Wekerle R. L., Bartke I., Stadelmann C., Lassmann H., Wekerle H., Hohlfeld R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J. Exp. Med. 1999,189 (5), рр. 865-870.
- Kikuchihara Y., Abe H., Tanaka T., Kato M., Wang L., Ikarashi Y., Shibutani M. Relationship between brain accumulation of manganese and aberration of hippocampal adult neurogenesis after oral exposure to manganese chloride in mice. Toxicology. 2015, 6 (331), рр. 24-34. Doi:10.1016/j. tox.2015.02.005.
- Köhr G. NMDA receptor function: subunit composition versus spatial distribution. Cell and Tissue Research. 2006, 326 (2), рр. 439-446. doi: 10.1007/s00441-006-0273-6.
- Levesque L., Mizzen C. A., McLachlan D. R., Fraser P. E. Ligand specific effects on aluminum incorporation and toxicity in neurons and astrocytes. Brain Research. 2000, 877, рр. 191-202.
- Martin I., Dawson V. L., Dawson T. M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genomics Hum. Genet. 2011, 12, рр. 301-325.
- Meynen V., Cool P., Vansant E. F. Verified syntheses of mesoporous materials. Microporous and mesoporous materials. 2009, 125, рр. 170-223.
- Michalke B., Fernsebner K. New insights into manganese toxicity and speciation. Journal of Trace Elements in Medicine and Biology. 2014, 28 (2), рр. 106-116. doi: 10.1016/j.jtemb.2013.08.005.
- Ngwa A., Kanthasamy A., Gu Y., Fang N. Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol. 2011, 256, рр. 227-240.
- Oberdorster G. Nanotoxicology: Am Emerging Discipline Evolving from Studies of Ultrafine Particles. Environmental Health Perspective. 2005, 7, рр. 823-839.
- Oberdorster G., Sharp Z., Atudorei V. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, рр. 437-445.
- Ostiguy C., Asselin P., Malo S., Nadeau D. Prise en charge du manganisme d’origine professionnelle: Consensus d’un groupe d’experts: rapport IRSST, № 416. IRSST. Montreal, 2005, 62 p.
- Petrarca C., Clemente E., Amato V., Pedata P, Sabbioni E., Bernardini G., Iavicoli I., Cortese S., Niu Q., Otsuki T., Paganelli R., Di Gioacchino M. Engineered metal based nanoparticles and innate immunity. Clinical and Molecular Alergy. 2015, 13 (13), pp. 1-12.
- Prakash A., Babu D., Lavanya M., Shenbaga V, Devasena T. Toxicity studies of aluminium oxide nanoparticles in cell lines. International Journal of Nanotechnology and Applications. 2011, 5 (2), pp. 99-107.
- Ricci G., Volpi L., Pasquali L., Petrozzi L., Siciliano G. Astrocyte-neuron interactions in neurological disorders. J. Biol. Phys. 2009, 35 (4), pp. 317-336.
- Rossbach B., Buchta M., Csanady G. A., Filser J. G., Hilla W., Windorfer K., Stork J., Zschiesche W., Gefeller O., Pfahlberg A., Schaller K. H., Egerer E., Pinzön L. C., Letzel S. Biological monitoring of welders exposed to aluminium. Toxicology Letters. 2006, 162, pp. 239-45.
- Saber H. The interaction of manganes nanoparticles with pc-12 cells induces dopamine depletion. Toxicol. Science. 2006, 92 (2), pp. 456-463.
- Salmina A. B., Petrova M. M., Taranushenko T. E., Prokopenko S. V., Malinovskaya N. A., Okuneva O. S., Inzhutova A. I., Morgun A. V., Fursov A. A. Alteration of neuron-glia interactions in neurodegeneration: molecular biomarkers and therapeutic strategy. Neurodegenerative diseases: processes, prevention, protection and monitoring / ed. R. C.-C. Chang. Rijeka, InTech, 2011, pp. 273-300.
- Shinoda Y., Sadakata T., Yagishita K., Kinameri E., Katoh-Semba R., Sano Y., Furuichi T. Aspects of excitatory/ inhibitory synapses in multiple brain regions are correlated with levels of brain-derived neurotrophic factor/neurotrophin-3. Biochemical and Biophysical Research Communications. 2018. doi: 10.1016/j.bbrc.2018.12.100.
- Stefanescu D., Khoshnan A., Patterson P., Hering J. Neurotoxicity of manganese oxide nanomaterials. Journal of Nanoparticle Research. 2009, 1 1 (8), pp. 1957-1969.
- Szczepankiewicz A., Rachel M., Sobkowiak P, Kycler Z., Wojsyk-Banaszak I., Schöneich N., Szczawinska-Poplonyk A., Breborowicz A. Neurotrophin serum concentrations and polymorphisms of neurotrophins and their receptors in children with asthma. Respiratory Medicine. 2013, 107, pp. 30-37. Available at: http://dx.doi. org/10.1016/j.rmed.2012.09.024.
- Tao Li, Tingting Shi, Xiaobo Li, Shuilin Zeng, Lihong Yin, Yuepu Pu. Effects of Nano-MnO2 on Dopaminergic Neurons and the Spatial Learning Capability of Rats. Int. J. Environ. Res. Public Health. 2014, 11, pp. 7918-7930. doi: 10.3390/ijerph1 10807918.
- Wang J., Rahman M., Duhart H., Newport G. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. NeuroToxicology. 2009, 30, pp. 926-933.
- Wisanti Laohaudomchok, Xihong Lin., F. Herrick R., Shona C. Fang., M. Cavallari J. Ruth Shrairman, Landau A., C. Christiani D., G. Weisskopfa M. Neuropsychological Effects of Low-Level Manganese Exposure in Welders. Neurotoxicology. 2011, 32 (2), pp. 171-179.
- Yagishita K., Suzuki R., Mizuno S., et al. CAPS2 deficiency affects environmental enrichment-induced adult neurogenesis and differentiation/survival of newborn neurons in the hippocampal dentate gyrus. Neurosci. Lett. 2017, 661, pp. 121-125.
- Yokel R. The toxicology of aluminum in the brain. Neurotoxicology. 2000, 21 (5), pp. 813-829.
Supplementary files
