The impact of ventilation systems on the risk of viral transmission (review article)
- Authors: Abramkina D.V.1, Verma V.1
-
Affiliations:
- Moscow State University of Civil Engineering
- Issue: Vol 31, No 6 (2024)
- Pages: 419-428
- Section: REVIEWS
- URL: https://journal-vniispk.ru/1728-0869/article/view/314518
- DOI: https://doi.org/10.17816/humeco640885
- ID: 314518
Cite item
Abstract
Understanding the aerosol transmission mechanism of respiratory infectious diseases is crucial for predicting indoor air circulation and optimizing ventilation system design. A literature search was conducted using various keyword combinations in the PubMed database. The selection included studies examining the impact of indoor microclimate parameters and ventilation system performance on the risk of viral transmission. Since 2020, there has been increasing interest in studying how viral infections spread via aerosols within buildings and transportation infrastructure, considering the operational conditions of engineering systems. Currently, substantial evidence supports the dependence of viral aerosol viability on indoor temperature and humidity levels. Maintaining an optimal relative humidity of 40–60% at standard room temperature is essential not only for aerosol stability but also for virus neutralization. However, there is a lack of studies investigating the effects of air mobility and indoor pollution on the stability of viral pathogens. A significant body of literature confirms the influence of ventilation system efficiency on infection risk in buildings. To reduce the spread of respiratory viruses, an air exchange rate of at least 30 m3/h per person is recommended. Based on the findings, a set of practical recommendations for ventilation system operation amidst increased disease incidence has been developed. Discrepancies between international and Russian regulatory requirements regarding indoor climate parameters and air quality standards have been identified, emphasizing the need for improved measures to mitigate the spread of respiratory infections.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Darya V. Abramkina
Moscow State University of Civil Engineering
Author for correspondence.
Email: dabramkina@ya.ru
ORCID iD: 0000-0001-8635-1669
SPIN-code: 2376-9125
Cand. Sci. (Engineering), Assistant Professor
Russian Federation, 26 Yaroslavskoye hwy, Moscow, 129337Vishal Verma
Moscow State University of Civil Engineering
Email: vishalverma2k16@gmail.com
ORCID iD: 0009-0006-5290-9162
Graduate Student
Russian Federation, 26 Yaroslavskoye hwy, Moscow, 129337References
- Vetrova EN, Chernyshova AI, Pritchina TN, et al. Monitoring of respiratory viral infections in Moscow during 2011–2022. JMEI. 2023;100(5):328–337. doi: 10.36233/0372-9311-376 EDN: TIEIOC
- Moreno T, Gibbons W. Aerosol transmission of human pathogens: From miasmata to modern viral pandemics and their preservation potential in the Anthropocene record. Geosci Front. 2022;13(6):101282. doi: 10.1016/j.gsf.2021.101282
- World Health Organization Europe. Global report on infection prevention and control. Geneva, Switzerland; 2022. 182 p.
- Krieger EA, Grjibovski AM, Samodova OV, Eriksen HM. Healthcare-associated infections in Northern Russia: Results of ten point-prevalence surveys in 2006–2010. Medicina. 2015;51(3):193–199. doi: 10.1016/j.medici.2015.05.002
- Rong R, Lin L, Yang Y, et al. Trending prevalence of healthcare-associated infections in a tertiary hospital in China during the COVID-19 pandemic. BMC Infectious Diseases. 2023;23(1):41. doi: 10.1186/s12879-022-07952-9
- Yamaguto GE, Zhen F, Moreira MM, et al. Community respiratory viruses and healthcare-associated infections: epidemiological and clinical aspects. J Hosp Infect. 2022;12:187–193. doi: 10.1016/j.jhin.2022.01.009
- Seto WH. Airborne transmission and precautions: facts and myths. J Hosp Infect. 2015;89(4):225–228. doi: 10.1016/j.jhin.2014.11.005
- Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16(5):335–347. doi: 10.1111/j.1600-0668.2006.00432.x
- Huang J, Jones P, Zhang A, et al. Outdoor airborne transmission of coronavirus among apartments in high-density cities. Frontiers in Built Environment. 2021;7:666923. doi: 10.3389/fbuil.2021.666923
- Kwon KS, Park JI, Park YJ, et al. Evidence of long-distance droplet transmission of SARS-CoV-2 by direct air flow in a restaurant in Korea. J Korean Med Sci. 2020;35(46):e415. doi: 10.3346/jkms.2020.35.e415
- Jiang G, Wang C, Song L, et al. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster. Front Environ Sci Eng. 2021;15(3):46. doi: 10.1007/s11783-021-1386-6
- Jang S, Han S, Rhee J. Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg Infect Dis. 2020;26(8):1917–1920. doi: 10.3201/eid2608.200633
- Shen Y, Li C, Dong, H, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med. 2020;180(12):1665–1671. doi: 10.1001/jamainternmed.2020.5225
- Tellier R. COVID-19: the case for aerosol transmission. Interface Focus. 2022;12(2):20210072. doi: 10.1098/rsfs.2021.0072
- Milton DK. A rosetta stone for understanding infectious drops and aerosols. J Pediatric Infect Dis Soc. 2020;9(4):413–415. doi: 10.1093/jpids/piaa079
- Prather KA, Marr LC, Schooley RT, et al. Airborne transmission of SARS-CoV-2. Science. 2020;370(6514):303–304. doi: 10.1126/science.abf0521
- Chong KL, Ng CS, Hori N, et al. Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys Rev Lett. 2021;126(3):034502. doi: 10.1103/PhysRevLett.126.034502
- Tang JW, Bahnfleth WP, Bluyssen PM, et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Hosp Infect. 2021;110:89–96. doi: 10.1016/j.jhin.2020.12.022
- Raina SK, Kumar R, Bhota S, et al. Does temperature and humidity influence the spread of COVID-19? A preliminary report. J Family Med Prim Care. 2020;9(4):1811–1814. doi: 10.4103/jfmpc.jfmpc_494_20
- Paynter S. Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol Infect. 2015;143(6):1110–1118. doi: 10.1017/S0950268814002702
- Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and drop-lets. J R Soc Interface. 2024;21(215):18. doi: 10.1098/rsif.2024.0018
- Zhan S, Lin Z. Dilution-based evaluation of airborne infection risk — thorough expansion of Wells-Riley model. Build Environ. 2021;194:107674. doi: 10.1016/j.buildenv.2021.107674
- Dbouk T, Drikakis D. On coughing and airborne droplet transmission to humans. Phys Fluids. 2020;32(5):053310. doi: 10.1063/5.0011960
- Rezaei M, Netz RR. Airborne virus transmission via respiratory droplets: Effects of droplet evaporation and sedimentation. Curr Opin Colloid Interface Sci. 2021;55:101471. doi: 10.1016/j.cocis.2021.101471
- Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza A viability in droplets and implications for influenza’s seasonality. PLoS One. 2012;7(10):e46789. doi: 10.1371/journal.pone.0046789
- Kormuth KA, Lin K, Qian Z, et al. Environmental persistence of influenza viruses is dependent upon virus type and host origin. mSphere. 2019;4(4):e00552–19. doi: 10.1128/mSphere.00552-19
- Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol. 2023;95(1):e28103. doi: 10.1002/jmv.28103
- Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annu Rev Virol. 2020;7(1):83–101. doi: 10.1146/annurev-virology-012420-022445
- Wolkoff P. Indoor air humidity revisited: Impact on acute symptoms, work productivity, and risk of influenza and COVID-19 infection. Int J Hyg Environ Health. 2024;256:114313. doi: 10.1016/j.ijheh.2023.114313
- Sze To GN, Wan MP, Chao CYH, et al. Experimental study of dispersion and deposition of expiratory aerosols in aircraft cabins and impact on infectious disease transmission. Aerosol Science and Technology. 2009;43(5):466–485. doi: 10.1080/02786820902736658
- Coccia M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci Total Environ. 2020;729:138474. doi: 10.1016/j.scitotenv.2020.138474
- Wu X, Nethery RC, Sabath MB, et al. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci Adv. 2020;6(45):eabd4049. doi: 10.1126/sciadv.abd4049
- Nor NSM, Yip CW, Ibrahim N, et al. Particulate matter () as a potential SARS-CoV-2 carrier. Sci Rep. 2021;11(1):2508. doi: 10.1038/s41598-021-81935-9
- Ciglenečki I, Orlović-Leko P, Vidović K, Tasić V. The possible role of the surface active substances (SAS) in the airborne transmission of SARS-CoV-2. Environ Res. 2021;198:111215. doi: 10.1016/j.envres.2021.111215
- Guo M, Xu P, Xiao T, et al. Review and comparison of HVAC operation guidelines in different countries during the COVID-19 pandemic. Build Environ. 2021;187:107368. doi: 10.1016/j.buildenv.2020.107368
- Amoatey P, Omidvarborna H, Baawain MS, Al-Mamun A. Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci Total Environ. 2020;733:139356. doi: 10.1016/j.scitotenv.2020.139356
- Bhagat RK, Davies Wykes MS, Dalziel SB, Linden PF. Effects of ventilation on the indoor spread of COVID-19. J Fluid Mech. 2020;903:F1. doi: 10.1017/jfm.2020.720
- Melikov AK. COVID-19: Reduction of airborne transmission needs paradigm shift in ventilation. Building and Environment. 2020;186:107336. doi: 10.1016/j.buildenv.2020.107336
- Nejatian A, Sadabad FE, Shirazi FM, et al. How much natural ventilation rate can suppress COVID-19 transmission in occupancy zones? J Res Med Sci. 2024;28:84. doi: 10.4103/jrms.jrms_796_22
- Pavlov MV, Karpov DF, Vafaeva KM, et al. Non-destructive thermal monitoring of temperature and flow rate of the heat carrier in a heating device. E3S Web of Conferences. 2024;581:01049. doi: 10.1051/e3sconf/202458101049
- Liu Z, Liu H, Yin H, et al. Prevention of surgical site infection under different ventilation systems in operating room environment. Front Environ Sci Eng. 2021;15(3):36. doi: 10.1007/s11783-020-1327-9
- Li T, Zhang X, Li C, et al. Onset of respiratory symptoms among Chinese students: associations with dampness and redecoration, and inadequate ventilation in the school. J Asthma. 2020;57(5):495–504. doi: 10.1080/02770903.2019.1590591
- Abramkina D, Ivanova A. Local air humidifiers in museums. In: Murgul V., Pasetti M., editors. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018. Advances in Intelligent Systems and Computing. Publisher: Springer, Cham; 2018;982:78–83. doi: 10.1007/978-3-030-19756-8_8
- Yu ITS, Li Y, Wong TW, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350(17):1731–1739. doi: 10.1056/NEJMoa032867
- Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020;10(1):12732. doi: 10.1038/s41598-020-69286-3
- Ong SWX, Tan YK, Chia PY, et al. Air, Surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610–1612. doi: 10.1001/jama.2020.3227
- Azuma K, Yanagi U, Kagi N, et al. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020;25(1):66. doi: 10.1186/s12199-020-00904-2
- van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567. doi: 10.1056/NEJMc2004973
- Birgand G, Peiffer-Smadja N, Fournier S, et al. Assessment of air contamination by SARS-CoV-2 in hospital settings. JAMA Netw Open. 2020;3(12):e2033232. doi: 10.1001/jamanetworkopen.2020.33232
- Dancer SJ, Li Y, Hart A, et al. What is the risk of acquiring SARS-CoV-2 from the use of public toilets? Sci Total Environ. 2021;792:148341. doi: 10.1016/j.scitotenv.2021.148341
- Birmili W, Selinka HC, Moriske HJ, et al. Ventilation concepts in schools for the pre-vention of transmission of highly infectious viruses (SARS-CoV-2) by aerosols in indoor air. Bundesgesundheitsblatt Gesund-heitsforschung Gesundheitsschutz. 2021;64(12):1570–1580. doi: 10.1007/s00103-021-03452-4 (In Germ.)
- Zhang S, Niu D, Lu Y, Lin Z. Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls. Sci Total Environ. 2022;833:155173. doi: 10.1016/j.scitotenv.2022.155173
- Su W, Yang B, Melikov A, et al. Infection probability under different air distribution patterns. Building and Environment. 2022;207 (Pt B):108555. doi: 10.1016/j.buildenv.2021.108555
- Nielsen PV, Xu C. Multiple airflow patterns in human microenvironment and the influence on short-distance airborne cross-infection — A review. Indoor and Built Environment. 2021;31(5):1420326X2110485. doi: 10.1177/1420326X211048539
- de Haas MMA, Loomans MGLC, te Kulve M, et al. Effectiveness of personalized ventilation in reducing airborne infection risk for long-term care facilities. International Journal of Ventilation. 2023;22(4):327–335. doi: 10.1080/14733315.2023.2198781
Supplementary files
