通风系统对病毒传播风险的影响(综述)
- 作者: Abramkina D.V.1, Verma V.1
-
隶属关系:
- Moscow State University of Civil Engineering
- 期: 卷 31, 编号 6 (2024)
- 页面: 419-428
- 栏目: REVIEWS
- URL: https://journal-vniispk.ru/1728-0869/article/view/314518
- DOI: https://doi.org/10.17816/humeco640885
- ID: 314518
如何引用文章
详细
了解呼吸道传染病的气溶胶传播机制对于预测室内空气流动模式和优化通风系统设计至关重要。本研究基于 PubMed 数据库,采用多种关键词组合进行文献检索,筛选了研究室内微气候参数和通风系统运行条件对病毒传播风险影响的相关论文。自 2020 年以来,关于建筑物及交通基础设施内病毒气溶胶传播机制的研究逐渐增多,并开始关注工程系统的运行条件对病毒扩散的影响。现有研究证实,病毒气溶胶的存活能力与室内温湿度条件密切相关。维持 40–60% 的相对湿度及标准室温不仅有助于降低气溶胶的稳定性,还可有效降低病毒的活性。然而,关于空气流动特性及室内污染物对病毒病原体稳定性影响的研究仍较为有限。此外,大量文献证实通风系统的效率对建筑物内感染风险有直接影响。为降低呼吸道病毒的传播风险,建议通风量至少达到每人 30 m³/h。基于本综述的研究结果,制定了在呼吸道疾病流行期间优化通风系统运行的实践建议。此外,本研究还分析了国际和俄罗斯在室内气候参数及空气质量要求方面的法规差异,强调了优化通风措施在减少呼吸道疾病传播中的关键作用。
作者简介
Darya V. Abramkina
Moscow State University of Civil Engineering
编辑信件的主要联系方式.
Email: dabramkina@ya.ru
ORCID iD: 0000-0001-8635-1669
SPIN 代码: 2376-9125
Cand. Sci. (Engineering), Assistant Professor
俄罗斯联邦, 26 Yaroslavskoye hwy, Moscow, 129337Vishal Verma
Moscow State University of Civil Engineering
Email: vishalverma2k16@gmail.com
ORCID iD: 0009-0006-5290-9162
Graduate Student
俄罗斯联邦, 26 Yaroslavskoye hwy, Moscow, 129337参考
- Vetrova EN, Chernyshova AI, Pritchina TN, et al. Monitoring of respiratory viral infections in Moscow during 2011–2022. JMEI. 2023;100(5):328–337. doi: 10.36233/0372-9311-376 EDN: TIEIOC
- Moreno T, Gibbons W. Aerosol transmission of human pathogens: From miasmata to modern viral pandemics and their preservation potential in the Anthropocene record. Geosci Front. 2022;13(6):101282. doi: 10.1016/j.gsf.2021.101282
- World Health Organization Europe. Global report on infection prevention and control. Geneva, Switzerland; 2022. 182 p.
- Krieger EA, Grjibovski AM, Samodova OV, Eriksen HM. Healthcare-associated infections in Northern Russia: Results of ten point-prevalence surveys in 2006–2010. Medicina. 2015;51(3):193–199. doi: 10.1016/j.medici.2015.05.002
- Rong R, Lin L, Yang Y, et al. Trending prevalence of healthcare-associated infections in a tertiary hospital in China during the COVID-19 pandemic. BMC Infectious Diseases. 2023;23(1):41. doi: 10.1186/s12879-022-07952-9
- Yamaguto GE, Zhen F, Moreira MM, et al. Community respiratory viruses and healthcare-associated infections: epidemiological and clinical aspects. J Hosp Infect. 2022;12:187–193. doi: 10.1016/j.jhin.2022.01.009
- Seto WH. Airborne transmission and precautions: facts and myths. J Hosp Infect. 2015;89(4):225–228. doi: 10.1016/j.jhin.2014.11.005
- Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16(5):335–347. doi: 10.1111/j.1600-0668.2006.00432.x
- Huang J, Jones P, Zhang A, et al. Outdoor airborne transmission of coronavirus among apartments in high-density cities. Frontiers in Built Environment. 2021;7:666923. doi: 10.3389/fbuil.2021.666923
- Kwon KS, Park JI, Park YJ, et al. Evidence of long-distance droplet transmission of SARS-CoV-2 by direct air flow in a restaurant in Korea. J Korean Med Sci. 2020;35(46):e415. doi: 10.3346/jkms.2020.35.e415
- Jiang G, Wang C, Song L, et al. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster. Front Environ Sci Eng. 2021;15(3):46. doi: 10.1007/s11783-021-1386-6
- Jang S, Han S, Rhee J. Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg Infect Dis. 2020;26(8):1917–1920. doi: 10.3201/eid2608.200633
- Shen Y, Li C, Dong, H, et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med. 2020;180(12):1665–1671. doi: 10.1001/jamainternmed.2020.5225
- Tellier R. COVID-19: the case for aerosol transmission. Interface Focus. 2022;12(2):20210072. doi: 10.1098/rsfs.2021.0072
- Milton DK. A rosetta stone for understanding infectious drops and aerosols. J Pediatric Infect Dis Soc. 2020;9(4):413–415. doi: 10.1093/jpids/piaa079
- Prather KA, Marr LC, Schooley RT, et al. Airborne transmission of SARS-CoV-2. Science. 2020;370(6514):303–304. doi: 10.1126/science.abf0521
- Chong KL, Ng CS, Hori N, et al. Extended lifetime of respiratory droplets in a turbulent vapor puff and its implications on airborne disease transmission. Phys Rev Lett. 2021;126(3):034502. doi: 10.1103/PhysRevLett.126.034502
- Tang JW, Bahnfleth WP, Bluyssen PM, et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Hosp Infect. 2021;110:89–96. doi: 10.1016/j.jhin.2020.12.022
- Raina SK, Kumar R, Bhota S, et al. Does temperature and humidity influence the spread of COVID-19? A preliminary report. J Family Med Prim Care. 2020;9(4):1811–1814. doi: 10.4103/jfmpc.jfmpc_494_20
- Paynter S. Humidity and respiratory virus transmission in tropical and temperate settings. Epidemiol Infect. 2015;143(6):1110–1118. doi: 10.1017/S0950268814002702
- Longest AK, Rockey NC, Lakdawala SS, Marr LC. Review of factors affecting virus inactivation in aerosols and drop-lets. J R Soc Interface. 2024;21(215):18. doi: 10.1098/rsif.2024.0018
- Zhan S, Lin Z. Dilution-based evaluation of airborne infection risk — thorough expansion of Wells-Riley model. Build Environ. 2021;194:107674. doi: 10.1016/j.buildenv.2021.107674
- Dbouk T, Drikakis D. On coughing and airborne droplet transmission to humans. Phys Fluids. 2020;32(5):053310. doi: 10.1063/5.0011960
- Rezaei M, Netz RR. Airborne virus transmission via respiratory droplets: Effects of droplet evaporation and sedimentation. Curr Opin Colloid Interface Sci. 2021;55:101471. doi: 10.1016/j.cocis.2021.101471
- Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza A viability in droplets and implications for influenza’s seasonality. PLoS One. 2012;7(10):e46789. doi: 10.1371/journal.pone.0046789
- Kormuth KA, Lin K, Qian Z, et al. Environmental persistence of influenza viruses is dependent upon virus type and host origin. mSphere. 2019;4(4):e00552–19. doi: 10.1128/mSphere.00552-19
- Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol. 2023;95(1):e28103. doi: 10.1002/jmv.28103
- Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of respiratory viral infections. Annu Rev Virol. 2020;7(1):83–101. doi: 10.1146/annurev-virology-012420-022445
- Wolkoff P. Indoor air humidity revisited: Impact on acute symptoms, work productivity, and risk of influenza and COVID-19 infection. Int J Hyg Environ Health. 2024;256:114313. doi: 10.1016/j.ijheh.2023.114313
- Sze To GN, Wan MP, Chao CYH, et al. Experimental study of dispersion and deposition of expiratory aerosols in aircraft cabins and impact on infectious disease transmission. Aerosol Science and Technology. 2009;43(5):466–485. doi: 10.1080/02786820902736658
- Coccia M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. Sci Total Environ. 2020;729:138474. doi: 10.1016/j.scitotenv.2020.138474
- Wu X, Nethery RC, Sabath MB, et al. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci Adv. 2020;6(45):eabd4049. doi: 10.1126/sciadv.abd4049
- Nor NSM, Yip CW, Ibrahim N, et al. Particulate matter () as a potential SARS-CoV-2 carrier. Sci Rep. 2021;11(1):2508. doi: 10.1038/s41598-021-81935-9
- Ciglenečki I, Orlović-Leko P, Vidović K, Tasić V. The possible role of the surface active substances (SAS) in the airborne transmission of SARS-CoV-2. Environ Res. 2021;198:111215. doi: 10.1016/j.envres.2021.111215
- Guo M, Xu P, Xiao T, et al. Review and comparison of HVAC operation guidelines in different countries during the COVID-19 pandemic. Build Environ. 2021;187:107368. doi: 10.1016/j.buildenv.2020.107368
- Amoatey P, Omidvarborna H, Baawain MS, Al-Mamun A. Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci Total Environ. 2020;733:139356. doi: 10.1016/j.scitotenv.2020.139356
- Bhagat RK, Davies Wykes MS, Dalziel SB, Linden PF. Effects of ventilation on the indoor spread of COVID-19. J Fluid Mech. 2020;903:F1. doi: 10.1017/jfm.2020.720
- Melikov AK. COVID-19: Reduction of airborne transmission needs paradigm shift in ventilation. Building and Environment. 2020;186:107336. doi: 10.1016/j.buildenv.2020.107336
- Nejatian A, Sadabad FE, Shirazi FM, et al. How much natural ventilation rate can suppress COVID-19 transmission in occupancy zones? J Res Med Sci. 2024;28:84. doi: 10.4103/jrms.jrms_796_22
- Pavlov MV, Karpov DF, Vafaeva KM, et al. Non-destructive thermal monitoring of temperature and flow rate of the heat carrier in a heating device. E3S Web of Conferences. 2024;581:01049. doi: 10.1051/e3sconf/202458101049
- Liu Z, Liu H, Yin H, et al. Prevention of surgical site infection under different ventilation systems in operating room environment. Front Environ Sci Eng. 2021;15(3):36. doi: 10.1007/s11783-020-1327-9
- Li T, Zhang X, Li C, et al. Onset of respiratory symptoms among Chinese students: associations with dampness and redecoration, and inadequate ventilation in the school. J Asthma. 2020;57(5):495–504. doi: 10.1080/02770903.2019.1590591
- Abramkina D, Ivanova A. Local air humidifiers in museums. In: Murgul V., Pasetti M., editors. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2018. EMMFT-2018. Advances in Intelligent Systems and Computing. Publisher: Springer, Cham; 2018;982:78–83. doi: 10.1007/978-3-030-19756-8_8
- Yu ITS, Li Y, Wong TW, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350(17):1731–1739. doi: 10.1056/NEJMoa032867
- Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020;10(1):12732. doi: 10.1038/s41598-020-69286-3
- Ong SWX, Tan YK, Chia PY, et al. Air, Surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610–1612. doi: 10.1001/jama.2020.3227
- Azuma K, Yanagi U, Kagi N, et al. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020;25(1):66. doi: 10.1186/s12199-020-00904-2
- van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567. doi: 10.1056/NEJMc2004973
- Birgand G, Peiffer-Smadja N, Fournier S, et al. Assessment of air contamination by SARS-CoV-2 in hospital settings. JAMA Netw Open. 2020;3(12):e2033232. doi: 10.1001/jamanetworkopen.2020.33232
- Dancer SJ, Li Y, Hart A, et al. What is the risk of acquiring SARS-CoV-2 from the use of public toilets? Sci Total Environ. 2021;792:148341. doi: 10.1016/j.scitotenv.2021.148341
- Birmili W, Selinka HC, Moriske HJ, et al. Ventilation concepts in schools for the pre-vention of transmission of highly infectious viruses (SARS-CoV-2) by aerosols in indoor air. Bundesgesundheitsblatt Gesund-heitsforschung Gesundheitsschutz. 2021;64(12):1570–1580. doi: 10.1007/s00103-021-03452-4 (In Germ.)
- Zhang S, Niu D, Lu Y, Lin Z. Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls. Sci Total Environ. 2022;833:155173. doi: 10.1016/j.scitotenv.2022.155173
- Su W, Yang B, Melikov A, et al. Infection probability under different air distribution patterns. Building and Environment. 2022;207 (Pt B):108555. doi: 10.1016/j.buildenv.2021.108555
- Nielsen PV, Xu C. Multiple airflow patterns in human microenvironment and the influence on short-distance airborne cross-infection — A review. Indoor and Built Environment. 2021;31(5):1420326X2110485. doi: 10.1177/1420326X211048539
- de Haas MMA, Loomans MGLC, te Kulve M, et al. Effectiveness of personalized ventilation in reducing airborne infection risk for long-term care facilities. International Journal of Ventilation. 2023;22(4):327–335. doi: 10.1080/14733315.2023.2198781
补充文件
