Arkhangelsk Region 居民干扰素系统基因中单核苷酸变异:横断面研究
- 作者: Krieger E.A.1, Samodova O.V.1, Bebyakova N.A.1, Kudryavtsev A.V.1, Ivanova L.V.1, Samoilikov R.V.2, Potapova M.B.2, Solntseva V.K.3, Meremianina E.A.2, Svitich O.A.2,3
-
隶属关系:
- Northern State Medical University
- I. Mechnikov Research Institute of Vaccines and Sera
- Sechenov First Moscow State Medical University
- 期: 卷 32, 编号 4 (2025)
- 页面: 267-279
- 栏目: ORIGINAL STUDY ARTICLES
- URL: https://journal-vniispk.ru/1728-0869/article/view/314588
- DOI: https://doi.org/10.17816/humeco678036
- EDN: https://elibrary.ru/IIOVJH
- ID: 314588
如何引用文章
全文:
详细
论证。除气候和社会因素外,干扰素系统基因中的核苷酸序列变异也是决定北方居民对感染性疾病个体易感性的因素之一。这些基因所产蛋白质参与免疫应答过程。
目的。评估 Arkhangelsk Region 原住民与非原住民中干扰素系统相关基因(IFNAR1、IFNAR2、 IFNGR1、IFNL4 (IL-28B))单核苷酸变异的分布频率。
方法。我们在Arkhangelsk市对一项随机抽取的43–74岁成年居民样本(N=232,男性占36.6%)进行了现况性研究。研究方案包括问卷调查与分子遗传分析,用于确定以下单核苷酸变异(SNV)的等位基因和基因型:IFNAR1基因rs2257167,IFNAR2基因rs2229207, IFNGR1基因rs1327474,IFNL4(IL-28B)基因rs12979860和rs8099917。评估原住民群体与非原住民群体中观察到的基因型分布是否符合哈迪–温伯格平衡定律所预测的分布,并比较两组之间的分布差异。
结果。研究对象中包括86名原住民和146名非原住民。非原住民群体在rs2229207(IFNAR2)和rs12979860(IFNL4 (IL-28B))位点的基因型分布不符合哈迪–温伯格平衡定律,原因是杂合子数量偏高。与此同时,对于rs1327474(IFNGR1)这一变异位点,杂合子数量低于预期。与欧洲和全球人群相比,Arkhangelsk Region 居民中与病毒感染严重进程风险相关的rs2229207 (IFNAR2) C等位基因的频率更高。rs2229207(IFNAR2)位点的CC纯合基因型在阿尔汉格尔斯克州原住民中出现频率显著低于非原住民(分别为2.6%和11.2%)。在非原住民中观察到rs1327474(IFNGR1)位点CT杂合基因型的频率更高。
结论。我们揭示了 Arkhangelsk Region 成年居民群体的遗传结构特征,这些特征是由其他地区居民迁移至北方所导致的。这些特征反映出在欧洲北部非原住民中,病毒感染易感性遗传标记的高频分布。
作者简介
Ekaterina A. Krieger
Northern State Medical University
编辑信件的主要联系方式.
Email: kate-krieger@mail.ru
ORCID iD: 0000-0001-5179-5737
SPIN 代码: 2686-7226
MD, Cand. Sci. (Medicine), Ph.D, Associate Professor
俄罗斯联邦, 51 Troitskiy ave, Arkhangelsk, 163069Olga V. Samodova
Northern State Medical University
Email: ovsamodova@mail.ru
ORCID iD: 0000-0002-6730-6843
SPIN 代码: 9113-4496
Dr. Sci. (Medicine), Professor
俄罗斯联邦, 51 Troitskiy ave, Arkhangelsk, 163069Natalya A. Bebyakova
Northern State Medical University
Email: nbebyakova@mail.ru
ORCID iD: 0000-0002-9346-1898
SPIN 代码: 6326-5523
Dr. Sci. (Biology), Professor
俄罗斯联邦, 51 Troitskiy ave, Arkhangelsk, 163069Alexander V. Kudryavtsev
Northern State Medical University
Email: alex.v.kudryavtsev@yandex.ru
ORCID iD: 0000-0001-8902-8947
SPIN 代码: 9296-2930
Ph.D.
俄罗斯联邦, 51 Troitskiy ave, Arkhangelsk, 163069Liudmila V. Ivanova
Northern State Medical University
Email: ivanova.liudmila.v@yandex.ru
ORCID iD: 0000-0001-7682-4821
SPIN 代码: 3609-1254
俄罗斯联邦, 51 Troitskiy ave, Arkhangelsk, 163069
Roman V. Samoilikov
I. Mechnikov Research Institute of Vaccines and Sera
Email: roma_sam78@mail.ru
ORCID iD: 0000-0001-6405-1390
SPIN 代码: 3373-1321
俄罗斯联邦, Moscow
Mariia B. Potapova
I. Mechnikov Research Institute of Vaccines and Sera
Email: ptpv.msh@gmail.com
ORCID iD: 0000-0001-9647-1322
SPIN 代码: 1066-6146
俄罗斯联邦, Moscow
Viktoriia K. Solntseva
Sechenov First Moscow State Medical University
Email: solntseva_v_k@staff.sechenov.ru
ORCID iD: 0000-0003-3783-9232
MD, Cand. Sci. (Medicine), Associate Professor
俄罗斯联邦, MoscowEkaterina A. Meremianina
I. Mechnikov Research Institute of Vaccines and Sera
Email: ekaterina@meremianina.ru
ORCID iD: 0000-0003-4334-1473
SPIN 代码: 9721-4839
MD, Cand. Sci. (Medicine)
俄罗斯联邦, MoscowOxana A. Svitich
I. Mechnikov Research Institute of Vaccines and Sera; Sechenov First Moscow State Medical University
Email: svitichoa@yandex.ru
ORCID iD: 0000-0003-1757-8389
SPIN 代码: 8802-5569
MD, Dr. Sci (Medicine), Academician of Russian Academy of Science
俄罗斯联邦, Moscow; Moscow参考
- Bezmenova IN. Selection of informative genetic markers for assessment of adaptabilities of northerners: a review. Public Health and Life Environment – PH&LE. 2023;31(1):7-12. doi: 10.35627/2219-5238/2023-31-1-7-12 EDN: GEFVEQ
- Gubkina LV, Samodova AV, Dobrodeeva LK. Features of systemic and local immune reactions in the Kola samis and Russians living in the Far North. Transactions of the Kola Science Centre of RAS. Series: Natural Sciences and Humanities, 2024;3(1):131–136. doi: 10.37614/2949-1185.2024.3.1.015 EDN: UFFFGK
- Lacoma A, Mateo L, Blanco I, et al. Impact of host genetics and biological response modifiers on respiratory tract infections. Front. Immunol. 2019;10:1013. doi: 10.3389/fimmu.2019.01013
- Chen L, Zhang G, Li G, et al. IFNAR gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nat. Metab. 2022;4(3):359–373. doi: 10.1038/s42255-022-00547-3 EDN: QCWSMM
- Krieger EA, Samodova OV, Svitich OA, et al. The impact of polymorphic variants of interferon receptor genes on COVID-19 severity and antibiotic resistance. Russian Journal of Infection and Immunity. 2024;13(6):1027–1039. doi: 10.15789/2220-7619-TIO-17537 EDN: BRMZLE
- He XX, Chang Y, Jiang HJ, et al. Persistent effect of IFNAR-1 genetic polymorphism on the long-term pathogenesis of chronic HBV infection. Viral Immunol. 2010;23(3):251-257. doi: 10.1089/vim.2009.0102
- Song LeH, Xuan NT, Toan NL, et al. Association of two variants of the interferon-alpha receptor-1 gene with the presentation of hepatitis B virus infection. Eur. Cytokine Network. 2008;19(4):204-210. doi: 10.1684/ecn.2008.0137
- Azamor T, Cunha DP, da Silva AMV, et al. Congenital Zika Syndrome is associated with interferon alfa receptor 1. Front. Immunol. 2021;12:764746. doi: 10.3389/fimmu.2021.764746. EDN: WICDBA
- Frodsham AJ, Zhang L, Dumpis U, et al. Class II cytokine receptor gene cluster is a major locus for hepatitis B persistence. PNAS. 2006;103(24):9148-9153. doi: 10.1073/pnas.0602800103
- Duncan CJA, Mohamad SMB, Young DF, et al. Human IFNAR2 deficiency: lessons for antiviral immunity. Sci. Transl. Med. 2015;7(307):307ra154 doi: 10.1126/scitranslmed.aac4227
- Passarelli C, Civino A, Rossi MN, et al. IFNAR2 deficiency causing dysregulation of NK cell functions and presenting with hemophagocytic lymphohistiocytosis. Front. Genet. 2020;11. doi: 10.3389/fgene.2020.00937 EDN: ODTIFC
- Duncan CJA, Skouboe MK, Howarth S, et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 2022;219(6). doi: 10.1084/jem.20212427 EDN: WDZOMY
- Adi G, Obaid Z, Hafez DH, et al. Severe adverse reaction to Measles Vaccine due to homozygous mutation in the IFNAR2 gene: a case report and literature review. J. Clin. Immunol. 2024;45(1):30. doi: 10.1007/s10875-024-01814-6 EDN: DAIIYI
- Krieger EA, Samodova OV, Svitich OA, et al. The impact of interferon receptor gene polymorphisms on humoral immunity to influenza and frequency of acute respiratory viral infections; taking into account vaccination status. Journal Infectology. 2024;16(2):63-74. doi: 10.22625/2072-6732-2024-16-2-63-74 EDN: OTGHVJ
- Nhung VP, Ton ND, Ngoc TTB, et al. Host genetic risk factors associated with COVID-19 susceptibility and severity in vietnamese. Genes. 2022;13(10):1884. doi: 10.3390/genes13101884 EDN: TMVJZB
- Chen Y, Zeng Y, Wang J, Meng C. Immune and inflammation-related gene polymorphisms and susceptibility to tuberculosis in Southern Xinjiang population: A case-control analysis. Int. J. Immunogenet. 2022;49(2):70-82. doi: 10.1111/iji.12564 EDN: QGQTCU
- Agwa SHA, Kamel MM, Elghazaly H, et al. Association between Interferon-Lambda-3 rs12979860, TLL1 rs17047200 and DDR1 rs4618569 variant polymorphisms with the course and outcome of SARS-CoV-2 patients. Genes. 2021;12(6):830. doi: 10.3390/genes12060830 EDN: HBPZQE
- Saponi-Cortes JMR, Rivas MD, Calle-Alonso F, et al. IFNL4 genetic variant can predispose to COVID-19. Sci. Rep. 2021;11(1):21185. doi: 10.1038/s41598-021-00747-z EDN: YXQWBQ
- Nikolaeva LI, Sapronov GV, D'jachenko VV, et al. Interferon-lambda 3 is involved in the permission of pneumonia development after infection with respiratory viruses including SARS-CoV-2. International Medicine. 2021;3(1):4-9. doi: 10.5455/im.115159 EDN: CDVWBE
- Rahimi P, Tarharoudi R, Rahimpour A, et al. The association between interferon lambda 3 and 4 gene single-nucleotide polymorphisms and the recovery of COVID-19 patients. Virol. J. 2021;18(1):221. doi: 10.1186/s12985-021-01692-z EDN: ECCLYQ
- Kaczor MP, Seczyńska M, Szczeklik W, Sanak M. IL28B polymorphism (rs12979860) associated with clearance of HCV infection in Poland: systematic review of its prevalence in chronic hepatitis C patients and general population frequency. Pharmacol. Rep. 2015;67(2):260-266. doi: 10.1016/j.pharep.2014.10.006
- Zhang Y, Zhu SL, Chen J, Li LQ. Meta-analysis of associations of interleukin-28B polymorphisms rs8099917 and rs12979860 with development of hepatitis virus-related hepatocellular carcinoma. OncoTargets Ther. 2016;9:3249-57. doi: 10.2147/OTT.S104904
- Ge D, Fellay J, Thompson AJ, et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature. 2009;461(7262):399-401 doi: 10.1038/nature08309
- Tanaka Y, Nishida N, Sugiyama M, et la. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 2009;41(10):1105-1109. doi: 10.1038/ng.449
- Suppiah V, Moldovan M, Ahlenstiel G, et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet. 2009;41(10):1100-1104. doi: 10.1038/ng.447
- Egli A, Santer DM, O'Shea D, et al. IL-28B is a key regulator of B- and T-cell vaccine responses against influenza. PLoS Pathog. 2014;10(12):e1004556. doi: 10.1371/journal.ppat.1004556 EDN: UPTNPR
- Matic S, Milovanovic D, Mijailovic Z, et al. IFNL3/4 polymorphisms as a two-edged sword: an association with COVID-19 outcome. J. Med. Virol. 2023;95(2):e28506. doi: 10.1002/jmv.28506 EDN: NHDGPG
- Cakal B, Cavus B, Atasoy A, et al. The effects of IL28B rs12979860 and rs8099917 polymorphism on hepatitis B infection. North. Clin. Istanb. 2022;9(5):439-444. doi: 10.14744/nci.2022.37542 EDN: FFZTMF
- Cook S, Malyutina S, Kudryavtsev A, et al. Know your heart: Rationale, design and conduct of a cross-sectional study of cardiovascular structure, function and risk factors in 4500 men and women aged 35–69 years from two Russian cities, 2015–18. Wellcome Open Res. 2018;3:67. doi: 10.12688/wellcomeopenres.14619.3 EDN: OMTJSN
- Kholmatova KK, Gorbatova MA, Kharkova OA, Grjibovski AM. Cross-sectional studies: planning, sample size, data analysis. Ekologiya cheloveka [Human Ecology]. 2016;23(2):49-56. doi: 10.33396/1728-0869-2016-2-49-56 EDN: VQGTNJ
- Cui J. GENHWCCI: Stata module to calculate Hardy-Weinberg equilibrium test in case-control studies [Internet]. Statistical Software Components S437101. Boston College Department of Economics. 2004. Available from: https://www.gnu.org/licenses/gpl-3.0.txt
- Shim S, Kim J, Jung W, et al. Meta-analysis for genomewide association studies using case-control design: application and practice. Epidemiol. Health. 2016;38:e2016058. doi: 10.4178/epih.e2016058
- Clark K, Karsch-Mizrachi I, Lipman DJ, et al. GenBank. Nucleic Acids Res. 2016;44(D1):D67-D72. doi: 10.1093/nar/gkv1276
- Afonicheva KV, Kasparov EV, Marchenko IV, Smolnikova MV. Polymorphic variants of cytokine genes in populations of the Arctic zone of Russia: predisposition to diseases. Arktika i Sever [Arctic and North]. 2024;(56):210–231. doi: 10.37482/issn2221-2698.2024.56.210 EDN: CVMCZP
补充文件


