Исследование влияния условий электроформования на характеристики нетканого материала на основе фторопласта Ф42Л
- Авторы: Шабунина А.Ю.1, Волоковойнова Л.Д.1, Кожевников И.О.1, Зайцев Д.П.1, Терин Д.В.1, Савельева М.С.1, Русанова Т.Ю.1, Сердобинцев А.А.1, Демина П.А.1
-
Учреждения:
- Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
- Выпуск: Том 25, № 2 (2025)
- Страницы: 151-162
- Раздел: Химия
- URL: https://journal-vniispk.ru/1816-9775/article/view/357782
- DOI: https://doi.org/10.18500/1816-9775-2025-25-2-151-162
- EDN: https://elibrary.ru/HIBFAZ
- ID: 357782
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Анна Юрьевна Шабунина
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0009-0006-5329-9896
г.Саратов, ул. Астраханская, 83
Лариса Дмитриевна Волоковойнова
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0000-0001-6780-9865
г.Саратов, ул. Астраханская, 83
Илья Олегович Кожевников
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевскогог.Саратов, ул. Астраханская, 83
Дмитрий Павлович Зайцев
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевскогог.Саратов, ул. Астраханская, 83
Денис Владимирович Терин
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевскогог.Саратов, ул. Астраханская, 83
Мария Сергеевна Савельева
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0000-0003-2021-0462
г.Саратов, ул. Астраханская, 83
Татьяна Юрьевна Русанова
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевскогог.Саратов, ул. Астраханская, 83
Алексей Александрович Сердобинцев
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевскогог.Саратов, ул. Астраханская, 83
Полина Анатольевна Демина
Саратовский национальный исследовательский государственный университет имени Н. Г. Чернышевского
ORCID iD: 0000-0002-9203-582X
г.Саратов, ул. Астраханская, 83
Список литературы
- Batra S. K., Pourdeyhimi B. Introduction to Nonwovens Technology. Destech Publications, Inc., 2012. 366 p.
- Иноземцева О. А., Сальковский Ю. Е., Северюхина А. Н., Видяшева И. В., Петрова Н. В., Метвалли Х. А., Стецюра И. Ю., Горин Д. А. Электроформование функциональных материалов для биомедицины и тканевой инженерии // Успехи химии. 2015. Т. 84, № 3. С. 251-74. https://doi.org/10.1070/RCR4435?locatt=label:RUSSIAN
- Martínez-Hergueta F., Ridruejo A., González C., LLorca J. Ballistic performance of hybrid nonwoven/woven polyethylene fabric shields // International Journal of Impact Engineering. 2018. Vol. 111. P. 55-65. https://doi.org/10.1016/j.ijimpeng.2017.08.011
- Handbook of Nonwovens / ed. S. J. Russell. Woodhead Publishing, 2006. 530 p.
- Wendorff J. H., Agarwal S., Greiner A. Electrospinning: Materials, Processing, and Applications. Weinheim: Wiley-VCH, 2012. 241 p.
- Li S., Duan G., Zhang G., Yang H., Hou H., Dai Y., Sun Y., Jiang S. Electrospun nanofiber nonwovens and sponges towards practical applications of waterproofing, thermal insulation, and electromagnetic shielding/absorption // Materials Today Nano. 2024. Vol. 25. Art. 100452. https://doi.org/10.1016/j.mtnano.2024.100452
- Azmami O., Sajid L., Majid S., Ahmadi Z. El, Benayada A., Gmouh S. Development and application of nonwovens based on palm fiber as reinforcements of unsaturated polyester // Journal of Composite Materials. 2023. Vol. 57, № 5. P. 1035-1054. https://doi.org/10.1177/00219983221148824
- Gaynor J. G., Szlek D. B., Kwon S., Tiller P. S., Byington M. S., Argyropoulos D. S. Lignin use in nonwovens: A review // BioResources. 2022. Vol. 17, № 2. P. 3445-3488. https://doi.org/10.15376/biores.17.2.Gaynor
- Tamzid F., Sakhawat S. B., Rashid T. U. Chitosan based electrospun nanofibrous materials: A sustainable alternative for food packaging // Trends in Food Science & Technology. 2024. Vol. 151. Art. 104617. https://doi.org/10.1016/j.tifs.2024.104617
- Дмитриев Ю. А., Шиповская А. Б., Коссович Л. Ю. Влияние характеристик прядильного раствора и параметров электроформования на скорость образования и диаметр волокон из хитозана // Известия высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54, № 11. С. 109-112.
- Jiang S., Cheong J. Y., Nam J. S., Kim I.-D., Agarwal S., Greiner A. High-density fibrous polyimide sponges with superior mechanical and thermal properties // ACS Applied Materials & Interfaces. 2020. Vol. 12, № 16. P. 19006-19014. https://doi.org/10.1021/acsami.0c02004
- Yao K., Song C., Fang H., Wang F., Chen L., Jiang S., Zha G., Hou H. Freezing-extraction/vacuum-drying method for robust and fatigue-resistant polyimide fibrous aerogels and their composites with enhanced fire retardancy // Engineering. 2023. Vol. 21. P. 152-161. https://doi.org/10.1016/j.eng.2021.08.024
- Tao D., Li X., Dong Y., Zhu Y., Yuan Y., Ni Q., Fu Y., Fu S. Super-low thermal conductivity fibrous nanocomposite membrane of hollow silica/polyacrylonitrile // Composites Science and Technology. 2020. Vol. 188. Art. 107992. https://doi.org/10.1016/j.compscitech.2020.107992
- Zhao J., Zhu W., Wang X., Liu L., Yu J., Ding B. Fluorine-free waterborne coating for environmentally friendly, robustly water-resistant, and highly breathable fibrous textiles // ACS Nano. 2020. Vol. 14, № 1. P. 1045-1054. https://doi.org/10.1021/acsnano.9b08595
- Cheng X. Q., Jiao Y., Sun Z., Yang X., Cheng Z., Bai Q., Zhang Y., Wang K., Shao L. Constructing scalable superhydrophobic membranes for ultrafast water-oil separation // ACS Nano. 2021. Vol. 15, № 2. P. 3500-3508. https://doi.org/10.1021/acsnano.1c00158
- Lee S., Park J., Kim M.C., Kim M., Park P., Yoon I.-J., Nah J. Polyvinylidene fluoride core-shell nanofiber membranes with highly conductive shells for electromagnetic interference shielding // ACS Applied Materials & Interfaces. 2021. Vol. 13, № 21. P. 25428-25437. https://doi.org/10.1021/acsami.1c06230
- Yue Y., Gong X., Jiao W., Li Y., Yin X., Si Y., Yu J., Ding B. In situ electrospinning of thymol-loaded polyurethane fibrous membranes for waterproof, breathable, and antibacterial wound dressing application // Journal of Colloid and Interface Science. 2021. Vol. 592. P. 310-318. https://doi.org/10.1016/j.jcis.2021.02.048
- Liang Y., Ju J., Deng N., Zhou X., Yan J., Kang W., Cheng B. Super-hydrophobic self-cleaning bead-like SiO2@PTFE nanofiber membranes for waterproof-breathable applications // Applied Surface Science. 2018. Vol. 442. P. 54-64. https://doi.org/10.1016/j.apsusc.2018.02.126
- Drobny J. G. Fluoroplastics. iSmithers Rapra Publ., 2005. 192 p. (Rapra Technology Limited).
- Drobny J. G., Ebnesajjad S. Technology of Fluoropolymers: A Concise Handbook. CRC Press, 2023. 348 p.
- Ohkura M., Morizawa Y. Chapter 4: Fluoroplastics and fluoroelastomers - basic chemistry and high-performance applications // Fluorinated Polymers / eds. B. Ameduri, H. Sawada. 2016. Vol. 2. P. 80-109 (Polymer Chemistry Series). https://doi.org/10.1039/9781782629368-00080
- Kovalenko M. V., Protesescu L., Bodnarchuk M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals // Science. 2017. Vol. 358, № 6364. P. 745-750. https://doi.org/10.1126/science.aam7093
- Kostopoulou A., Brintakis K., Nasikas N. K., Stratakis E. Perovskite nanocrystals for energy conversion and storage // Nanophotonics. 2019. Vol. 8, № 10. P. 1607-1640. https://doi.org/10.1515/nanoph-2019-0119
- Wang S., Yousefi Amin A.A., Wu L., Cao M., Zhang Q., Ameri T. Perovskite nanocrystals: Synthesis, stability, and optoelectronic applications // Small Structures. 2021. Vol. 2, № 3. Art. 2000124. https://doi.org/10.1002/sstr.202000124
- Li Q., Zhao Y., Guo J., Zhou Q., Chen Q., Wang J. On-surface synthesis: A promising strategy toward the encapsulation of air unstable ultra-thin 2D materials // Nanoscale. 2018. Vol. 10, № 8. P. 3799-3804. https://doi.org/10.1039/C7NR09178H
- Fedorov P. P., Semashko V. V., Korableva S. L. Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization // Inorganic Materials. 2022. Vol. 58, № 3. P. 223-245. https://doi.org/10.1134/S0020168522030049
- Ковыршина А. А., Цюпка Д. В., Попова Н. Р., Горячева И. Ю., Горячева О. А. Модификация наночастиц оксида церия полимерными материалами // Известия Саратовского университета. Новая серия. Серия: Физика. 2024. Т. 24, вып. 3. С. 281-289. https://doi.org/10.18500/1817-3020-2024-24-3-281-289, EDN: WLYPMD
- Jacobs V., Anandjiwala R. D., Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers // Journal of Applied Polymer Science. 2010. Vol. 115, № 5. P. 3130-3136. https://doi.org/10.1002/app.31396
- Thompson C. J., Chase G. G., Yarin A. L., Reneker D. H. Effects of parameters on nanofiber diameter determined from electrospinning model // Polymer. 2007. Vol. 48, № 23. P. 6913-6922. https://doi.org/10.1016/j.polymer.2007.09.017
- Anon Image Processing and Analysis in Java. URL: https://imagej.net/ij/index.html (дата обращения: 26.05.2024).
- Wang Z., Cui Y., Wang J., Yang X., Wu Y., Wang K., Gao X., Li D., Li Y., Zheng X.-L., Zhu Y., Kong D., Zhao Q. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration // Biomaterials. 2014. Vol. 35, № 22. P. 5700-5710. https://doi.org/10.1016/j.biomaterials.2014.03.078
- Sedlak P., Sobola D., Gajdos A., Dallaev R., Nebojsa A., Kubersky P. Surface analyses of PVDF/NMP/[EMIM][TFSI] solid polymer electrolyte // Polymers. 2021. Vol. 13, № 16. Art. 2678. https://doi.org/10.3390/polym13162678
- Kmetík M., Kopal I., Král M., Dendisová M. Characterization of modified PVDF membranes using fourier transform infrared and raman microscopy and infrared nanoimaging: Challenges and advantages of individual methods // ACS Omega. 2024. Vol. 9, № 23. P. 24685-24694. https://doi.org/10.1021/acsomega.4c01197
- Kaspar P., Sobola D., Částková K., Dallaev R., Šťastná E., Sedlák P., Knápek A., Trčka T., Holcman V. Case study of polyvinylidene fluoride doping by carbon nanotubes // Materials. 2021. Vol. 14, № 6. Art. 1428. https://doi.org/10.3390/ma14061428
- Punetha D., Kumar A., Pandey S.K., Chakrabarti S. Tertiary nanocomposite-based self-powered E-skin as energy harvester and electronic nose // Journal of Materials Science: Materials in Electronics. 2024. Vol. 35, № 2. P. 160. https://doi.org/10.1007/s10854-023-11776-x
Дополнительные файлы


