On estimates of the order of the best M–term approximations of functions of several variables in the anisotropic Lorentz – Zygmund space

Cover Page

Cite item

Full Text

Abstract

The article considers the anisotropic  Lorentz – Karamata space of periodic functions of several variables and the Nikol'skii – Besov class in this space. The order-sharp estimates are established for the best $M$-term trigonometric approximations of functions from the Nikol'skii-Besov class in the norm of another Lorentz – Zygmund space.

About the authors

Gabdolla Akishev

Kazakhstan Branch of Lomonosov Moscow State University

11 Kazhymukan St., Astana 100008, Kazakhstan

References

  1. Bennett C., Sharpley R. Interpolation of Operators. Orlando : Academic Press, 1988. 469 p.
  2. Стейн И., Вейс Г. Введение в гармонический анализ на евклидовых пространствах. Москва : Мир, 1974. 333 c.
  3. Blozinski A. P. Multivariate rearrangements and Banach function spaces with mixed norms // Transactions of the American Mathematical Society. 1981. Vol. 263, № 1. P. 149–167. https://doi.org/10.1090/S0002-9947-1981-0590417-X
  4. Kolyada V. I. On embedding theorems // Nonlinear Analysis, Function spaces and Applic. Praha : Institute of Mathematics of the Academy of Sciences of the Czech Republic, 2007. P. 35–94. URL: http://dml.cz/dmlcz/702492 (дата обращения: 20.02.2022).
  5. Никольский С. М. Приближение функций многих переменных и теоремы вложения. Москва : Наука, 1977. 456 с.
  6. Аманов Т. И. Пространства дифференцируемых функций с доминирующей смешанной производной. Алма-Ата : Наука, 1976. 224 с.
  7. Лизоркин П. И., Никольский С. М. Пространства функций смешанной гладкости с декомпозиционной точки зрения // Труды Математического института имени В. А. Стеклова. 1989. Т. 187. С. 143–161.
  8. Dung D., Temlyakov V. N., Ullrich T. Hyperbolic Cross Approximation. Basel ; Berlin : Springer, 2018. 229 p. (Advanced Courses in Mathematics. CRM Barcelona).
  9. Белинский Э. С. Приближение «плавающей» системой экспонент на классах периодических функций с ограниченной смешанной производной // Исследования по теории функций многих вещественных переменных / отв. ред. Ю. А. Брудный. Ярославль : Ярославский гос. ун-т, 1988. С. 16–33.
  10. Темляков В. Н. Приближение функций с ограниченной смешанной производной // Труды Математического института имени В. А. Стеклова. 1986. Т. 178. С. 3–113.
  11. Темляков В. Н. Конструктивные разреженные тригонометрические приближения и другие задачи для функций смешанной гладкости // Математический сборник. 2015. Т. 206, вып. 11. С. 131–160. https://doi.org/10.4213/sm8466
  12. Temlyakov V. N. Constructive sparse trigonometric approximation for functions with small mixed smoothness // Constructive Approximation. 2017. Vol. 45, iss. 3. P. 467–495. https://doi.org/10.1007/s00365-016-9345-3
  13. Романюк А. С. Наилучшие M-членные тригонометрические приближения классов Бесова периодических функций многих переменных // Известия РАН. Серия математическая. 2003. Т. 67, № 2. С. 61–100. https://doi.org/10.4213/im427
  14. Bazarkhanov D. B., Temlyakov V. N. Nonlinear tensor product approximation of functions // Journal of Complexity. 2015. Vol. 31, iss. 6. P. 867–884. https://doi.org/10.1016/j.jco.2015.06.005
  15. Базарханов Д. Б. Нелинейные тригонометрические приближения классов функций многих переменных // Труды Математического института имени В. А. Стеклова. 2016. Т. 293. С. 8–42. https://doi.org/10.1134/S0371968516020023, EDN: WEMXBH
  16. Акишев Г. А. О точности оценок наилучшего M-членного приближения класса Бесова // Сибирские электронные математические известия. 2010. Т. 7. С. 255–274.
  17. Акишев Г. О порядках M-членного приближения классов в пространстве Лоренца // Математический журнал. Алматы. 2011. Т. 11, № 1. С. 5–29.
  18. Akishev G. On exact estimates of the order of approximation of functions of several variables in the anisotropic Lorentz – Zygmund space. arXiv: 2106.07188v2 [mathCA] 14 Jun 2021. 20 p.
  19. Akishev G. Estimates of the order of approximation of functions of several variables in the generalized Lorentz space. arXiv: 2105.14810v1 [mathCA] 31 May 2021. 18 p.
  20. Акишев Г. Об оценках порядка наилучших M-членных приближений функций многих переменных в анизотропном пространстве Лоренца – Караматы // Современные проблемы теории функций и их приложения : материалы 21-й междунар. Саратовской зимней школы (Саратов, 31 января – 4 февраля 2022 г.). Саратов : Саратовский университет [Издание], 2022. Вып. 21. С. 13–16. EDN: XCSQXT

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».