Том 23, № 4 (2023)

Обложка

Весь выпуск

Статьи

Метрика Вассерштейна и взвешенные метрики для многомерных распределений Гаусса

Кельберт М.Я., Сухов Ю.М.

Аннотация

Приводится ряд нижних и верхних оценок для расстояний Леви – Прохорова, Вассерштейна, Фреше и Хеллингера между вероятностными распределениями одной и той же или разных размерностей. Вводится взвешенное (или контекстно зависимое) расстояние полной вариации и расстояние Хеллингера. Доказаны верхняя и нижняя оценки для этих взвешенных метрик. Доказаны нижние оценки минимума суммы различных ошибок при проверке чувствительных гипотез.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):422-434
pages 422-434 views

Однородные пространства неразрешимых групп Ли, не допускающие эквиаффинных связностей ненулевой кривизны

Можей Н.П.

Аннотация

Важный подкласс среди однородных пространств формируют изотропно-точные однородные пространства, в частности, этот подкласс содержит все однородные пространства, допускающие инвариантную аффинную связность. Аффинная связность является эквиаффинной, если она допускает параллельную форму объема. Целью работы является локальное описание трехмерных однородных пространств, не допускающих инвариантных эквиаффинных связностей ненулевой кривизны, рассматривается случай неразрешимой группы Ли преобразований. Определены основные понятия: изотропно-точная пара, инвариантная аффинная связность, тензоры кривизны и кручения, тензор Риччи, эквиаффинная связность. Локальное изучение однородных пространств равносильно исследованию пар, состоящих из алгебры Ли и ее подалгебры. Для трехмерных однородных пространств неразрешимых групп Ли, допускающих инвариантные связности только ненулевой кривизны, определено, при каких условиях пространство не допускает эквиаффинных связностей. Исследования основаны на использовании свойств алгебр Ли, групп Ли и однородных пространств и носят, главным образом, локальный характер. Особенностью методов, представленных в работе, является применение чисто алгебраического подхода к описанию многообразий и связностей на них. Полученные результаты могут быть использованы в работах по дифференциальной геометрии, дифференциальным уравнениям, топологии, а также в других областях математики и физики, поскольку многие фундаментальные задачи в этих областях связаны с изучением инвариантных объектов на однородных пространствах, а алгоритмы могут быть компьютеризированы и применены для решения аналогичных задач в больших размерностях.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):435-442
pages 435-442 views

Орторекурсивные разложения, порожденные ядром Сеге

Терехин П.А.

Аннотация

В статье рассматриваются системы подпространств пространства Харди, порожденные ядром Сеге. Основной результат работы заключается в установлении сходимости орторекурсивных разложений по рассматриваемым системам подпространств. Заметим, что условия сходимости орторекурсивных разложений оказываются несколько более ограничительными по сравнению с ранее полученными условиями сходимости порядкосохраняющих слабых жадных алгоритмов и фреймовых разложений.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):443-455
pages 443-455 views

Идентификация двумерных полей предварительных напряжений в неоднородных пластинах

Богачев И.В., Недин Р.Д.

Аннотация

На основе модели планарных колебаний сплошных и имеющих отверстия или включения неоднородных предварительно напряженных пластин рассмотрены новые обратные задачи идентификации компонент тензора предварительных напряжений (ПН), являющихся функциями двух координат, при анализе акустического отклика в процессе зондирования. ПН задавались как результат решения вспомогательных задач о статическом нагружении пластин некоторой начальной нагрузкой. Для решения основной и вспомогательных задач расчета функций смещения пластин разработана конечно-элементная (КЭ) схема на основе выведенных соответствующих слабых постановок задач, реализованная в виде программных комплексов в КЭ-пакете FreeFem++. Были рассмотрены защемленные по одной грани прямоугольные пластины, как сплошные, так и имеющие отверстие или жесткую вставку. Сформулированы обратные задачи идентификации трех функций ПН, зависящих от двух координат, на основе дополнительной информации об акустическом отклике на незащемленных гранях пластин в результате рассмотрения нескольких наборов зондирующих нагрузок на нескольких частотах. Ввиду нелинейности обратных задач для их решения был разработан итерационный подход, сочетающий на каждой итерации решение прямых задач для текущих приближений искомых функций и определение поправок к ним из построенного операторного уравнения. Для решения операторного уравнения разработан проекционный метод, позволяющий представить поправки в виде разложений по заданным системам функций и свести решение к исследованию плохо обусловленных СЛАУ относительно наборов коэффициентов разложений с помощью метода А. Н. Тихонова. Приведены результаты вычислительных экспериментов по одновременной идентификации двумерных полей ПН, соответствующих различным видам начальных воздействий на рассмотренные пластины.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):456-471
pages 456-471 views

Разработка и апробация мобильного стенда для механических испытаний на одноосное сжатие биологических тканей

Доль А.В., Gulyaeva A.O., Фалькович А.С., Maystrenko D.N., Generalov M.I., Соловьёв А.В., Терин Д.В., Лемешкин М.О.

Аннотация

Разработаны методика и прототип мобильного испытательного стенда для проведения экспериментов на одноосное сжатие образцов биологических тканей. Стенд состоит из высокоточных весов, электронного штангенциркуля с модифицированными захватами и видеокамеры. С помощью стенда проведена серия экспериментов (в общей сложности 120) по определению модуля Юнга атеросклеротических бляшек и сосудистых стенок, удаленных из организма не позднее нескольких часов. Сформирована база данных механических характеристик бляшек и стенок артерий, максимально приближенных к их реальным прочностным свойствам. Кроме того, были построены регрессионные зависимости, связывающие единицы Хаунсфилда и модули Юнга атеросклеротических бляшек. Методика одноосного сжатия верифицирована на универсальной испытательной машине Instron 3342. Также для демонстрации применимости разработанной методики и стенда для одноосного сжатия твердых тканей проведены эксперименты с 14 образцами губчатой кости крупного рогатого скота.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):472-481
pages 472-481 views

Напряженное состояние вблизи дентальных имплантатов при резорбции костных тканей

Перельмутер М.Н.

Аннотация

Представлены результаты численного моделирования методом граничных интегральных уравнений (МГИУ) влияния резорбции костных тканей на напряженное состояние вблизи винтовых дентальных имплантатов при действии нормальной и наклонной сжимающих нагрузок. Используется прямой вариант МГИУ для кусочно-однородных подобластей. Расчет напряженного состояния имплантата и окружающих костных тканей выполнялся для состояния плоской деформации в предположении полного соединения материалов на границе имплантата и кости (остеоинтеграции) и состоял из двух этапов: 1) анализа всей конструкции имплантата со сглаженным винтовым соединением между имплантатом и окружающими костными тканями; 2) исследования распределения напряжений  с учетом формы винтового соединения  имплантата и костных тканей. Модель первого этапа расчета состояла из семи подобластей, соответствующих элементам конструкции имплантата и участкам костных тканей. На втором этапе расчета предполагалось, что впадины в губчатой кости, которые образуются  после установки имплантата, соответствуют винтовой резьбе на имплантате. Рассмотрено влияние резорбции костных тканей на концентрацию напряжений в витках резьбы имплантата и в губчатой костной ткани. Построение численных моделей выполнялось при допущении, что следствием резорбции костной ткани является формирование полости (лунки резорбции) вокруг имплантата. Вычисления проводились в предположении, что костные ткани являются изотропными и однородными упругими материалами. Установлено, что в результате резорбции  происходит значительное перераспределение напряжений в костных тканях и имплантате. Максимальные эквивалентные напряжения в кортикальной костной ткани снижаются, в губчатой костной ткани — возрастают. Результаты представлены в виде распределений интенсивности напряжений по границам подобластей расчетной модели.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):482-495
pages 482-495 views

Численный анализ напряженно-деформированного состояния остеотомий первой плюсневой кости

Полиенко А.В., Иванов Д.В., Киреев С.И., Бессонов Л.В., Мулдашева А.М., Оленко Е.С.

Аннотация

Отклонение первого пальца стопы кнаружи, взаимосвязанное с отклонением первой плюсневой кости кнутри, встречается у 46% пациентов старшей возрастной группы и называется вальгусной деформацией первого пальца стопы. Негативное влияние данной патологии на качество жизни пациентов является причиной обращения за медицинской помощью, золотым стандартом оказания которой считается хирургическая коррекция, а базисной хирургической техникой служит остеотомия (распиливание кости и фиксация ее фрагментов имплантатами) первой плюсневой кости. При этом идеальная остеотомия должна обеспечивать первоначальную стабильность в раннем послеоперационном периоде. Однако большое число способов выполнения остеотомии, а также преимущества и недостатки каждого из хирургических приемов не позволяют считать какой-то из них наиболее успешным. В этой связи цель работы состояла в разработке и валидации биомеханической модели остеотомии первой плюсневой кости для анализа ее стабильности и надежности в зависимости от типа остеотомии, степени смещения фрагментов кости, а также количества скрепляющих винтов. В данном исследовании проведено биомеханическое моделирование наиболее часто используемых вариантов остеотомии первой плюсневой кости стопы при хирургическом лечении ее вальгусной деформации. С этой целью было создано 10 моделей остеотомий отдельной первой плюсневой кости, которые затем были подвергнуты статическому нагружению для анализа их напряженно-деформированного состояния и оценки их успешности. Выявлены успешные (стабильные и надежные) варианты лечения, а также неуспешные. Неуспешными приняты два из десяти рассмотренных вариантов — остеотомии типа scarf со смещением фрагментов кости на 2/3 ее диаметра и закрепленными одним винтом. Выявлено, что остеотомии типа сhevron показали более высокую стабильность в сравнении со scarf-остеотомиями. В  данном исследовании впервые проведены численные эксперименты для сравнительного анализа стабильности и прочности наиболее часто используемых вариантов остеотомий на базе модели одной кости. Разработана и валидирована на основе натурных экспериментов биомеханическая модель scarf-остеотомии первой плюсневой кости.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):496-511
pages 496-511 views

Релаксация остаточных напряжений в поверхностно упрочненных вращающихся призматических элементах конструкций в условиях ползучести

Радченко В.П., Бербасова Т.И., Саушкин М.Н., Акинфиева М.М.

Аннотация

Разработан метод решения краевых задач релаксации остаточных напряжений во вращающемся поверхностно упрочненном призматическом образце в условиях высокотемпературной ползучести. Задача моделирует напряженно-деформированное состояние поверхностно упрочненного призматического стержня, торцевое сечение которого закреплено на абсолютно жестком диске, вращающегося с постоянной угловой скоростью. На первом этапе решена задача реконструкции полей остаточных напряжений и пластических деформаций после процедуры упрочнения, играющих роль начального напряженно-деформированного состояния. На втором этапе решается задача релаксации остаточных напряжений в условиях ползучести. Выполнено детальное исследование влияния угловой скорости на интенсивность релаксации остаточных напряжений в различных сечениях по осевой координате для призматического образца $10{\times}10{\times}150$ мм из сплава ЭП742 при температуре 650$^\circ$C после ультразвукового механического упрочнения одной из его граней. Анализ результатов расчета позволил установить, что для угловой скорости, изменяющейся от 1500 до 2500 об/мин, наблюдается нетривиальный эффект, заключающийся в том, что релаксация остаточных напряжений в более нагруженных сечениях, находящихся под действием осевых растягивающих напряжений вследствие вращения, происходит менее интенсивно, чем в «хвостовом» сечении, где осевая нагрузка равна нулю. Полученные в работе результаты могут быть полезными при оценке эффективности поверхностно упрочненных вращающихся деталей в условиях высокотемпературной ползучести.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):512-530
pages 512-530 views

Алгоритм выделения движений и классификации походки по данным акселерометра мобильного телефона

Дорофеев Н.В., Греченева А.В.

Аннотация

В  работе кратко описывается развитие информационно-технических средств с применением биометрических данных, в частности параметров походки человека. Описываются проблемы оценки параметров походки с помощью акселерометра мобильного телефона в реальных условиях. Обосновывается актуальность настоящего исследования в области разработки алгоритмов оценки биометрических показателей походки по данным носимых устройств. Рассматриваются основные подходы к обработке данных акселерометра носимых устройств, указываются основные недостатки и проблемы при повышении качества оценки параметров походки. Описывается алгоритм обработки данных акселерометра мобильного телефона. В предлагаемом алгоритме отбор шаблонов движений при походке в регистрируемых данных осуществляется на основе статистической информации в рамках «плавающего» временного окна (частотная компонента с максимальным вкладом в спектре сигнала акселерометра, длительностью отбираемых  временных сегментов), а также на основе значения коэффициента корреляции, отбираемых временных сегментов. На этапе сегментации данных временное окно для поиска сегментов движений, а также допустимые пороги отбора движений по их длительности изменяются в зависимости от индивидуальных особенностей походки и активности человека. Классификация отобранных сегментов по характеру движений походки осуществляется на основе нейронной сети прямого распространения. В качестве функции активации для скрытых слоев в работе применялся сигмоид, а для выходного слоя — нормализованная экспоненциальная функция. Обучение нейронной сети происходило методом градиентного обратного спуска с кросс-энтропией в качестве критерия оптимизации. За счет отбора сегментов с высоким коэффициентом корреляции классификация данных показывает качество различения движений выше 95%.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):531-543
pages 531-543 views

Оптимизация разработки нефтяных месторождений на основе 3D-модели пласта, полученной в результате автоадаптации

Персова М.Г., Соловейчик Ю.Г., Патрушев И.И., Насыбуллин А.В., Алтынбекова Г.Ж., Леонович Д.А.

Аннотация

В работе предлагается подход к оптимизации разработки нефтяных месторождений. Целевая функция включает взвешенные квадраты целевых показателей разработки и регуляризирующие добавки, в которых коэффициенты ищутся адаптивно. Регуляризирующие добавки обеспечивают выполнение ограничений на оптимизируемые параметры и быструю сходимость процесса оптимизации. При минимизации целевой функции выполняется линеаризация целевых показателей, и значения оптимизируемых параметров на очередной итерации ищутся путем решения системы линейных алгебраических уравнений (СЛАУ), получаемой из минимизации квадратичного функционала. Значения целевых показателей и их чувствительности к оптимизируемым параметрам вычисляются путем гидродинамического 3D-моделирования для модели месторождения, полученной в результате автоадаптации за период, предшествующий периоду оптимизации. Расчеты выполняются в распределенной вычислительной системе, состоящей из многоядерных персональных компьютеров. Для проведения апробации предлагаемого подхода была использована модель участка месторождения высоковязкой нефти Республики Татарстан. Оптимизация проведена с различными весовыми коэффициентами и желательными значениями добычи нефти в соответствующем целевом показателе. Показано, что оптимизированные планы обеспечивают более эффективную разработку нефтяного месторождения по сравнению с планом, использованным на практике. Вместе с этим оптимальный план, построенный по адаптированной  модели месторождения на ранней стадии разработки, оптимизирует разработку и для модели,  адаптированной на основе данных, полученных за весь период разработки месторождения. Это позволяет сделать вывод, что планы разработки, построенные по модели, адаптированной на основе данных, полученных за короткий срок, будут примерно в той же степени оптимизировать и характеристики добычи для реального месторождения. Время решения оптимизационных задач, содержащих около 500 параметров, в распределенной вычислительной системе составило около суток.
Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023;23(4):544-558
pages 544-558 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».