Cylindrical shell with a circular hole under various loads: Comparison of analytical and numerical solutions

Capa

Citar

Texto integral

Resumo

In this paper, the authors present the results of calculations of the stress field of a cylindrical shell weakened by a circular hole and under the influence of various loads: uniaxial tension, internal pressure and torsion. Six simplified equations of the theory of cylindrical shells with a high variability index (coinciding with the equations of the theory of shallow shells) are reduced to an equation of mathematical physics with respect to the stress potential, which is solved by the Fourier method. The main obstacle to obtaining an answer is the need to search for coefficients in the decomposition of the solution into the sum of the basis functions for which this solution satisfies the boundary conditions. Also, this equation depends on the parameter $\beta$, which is responsible for the relationship between the geometric characteristics of the shell and the hole. From a mechanical point of view, for small and medium holes, this parameter has limitations of $\beta\leq 4$, because for large values, the hole is considered large, and the general equations of the theory of cylindrical shells are used to describe the stress-strain state. At the same time, a detailed study of classical works has led to the understanding that none of the previously proposed methods for finding coefficients can be considered definitively successful, and the results obtained by these methods vary. Among the variety of works by Soviet and Western scientists of the 1960-70s years of the twentieth century, the numerical results of engineer Van Dyke, which he obtained by collocation, stand out. Unlike his contemporaries, who lay out the solution in a row for a small parameter $\beta$ and therefore get results only close to the flat case, Van Dyke first published results for the entire working range of the parameter $\beta$ in the framework of considering small and medium holes. The authors proposed a new approach based on the decomposition of basic functions into a Fourier series. For the first time, it was possible to compose an infinite system of linearly independent equations for finding unknown coefficients. It is essential that the proposed method, unlike the well-known small parameter method, has no mathematical limitations and can be used not only for the values of the parameter $\beta$ close to zero, but for any values. Restrictions up to $\beta=4$ are imposed by the mechanical model. In this paper, systems for finding unknown coefficients for basic functions for three types of loads are compiled, and the results obtained by the authors are compared with the results obtained by the numerical method. At the same time, if in most sources only the results of calculating the circumferential stresses at the boundary of the hole are given, in the proposed work the stress field for the entire cylindrical shell is found, arising due to the presence of the hole, depending on the polar coordinates $(r,\theta)$.

Sobre autores

Stanislava Kashtanova

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences

61 Bolshoi prospect V.O., St. Petersburg 199178, Russia

Alexey Rzhonsnitskiy

Saint-Petersburg State Institute of Technology

26 Moskovski Ave., St. Petersburg 190013, Russia

Bibliografia

  1. Каштанова С. В., Ржонсницкий А. В. Аналитический подход к выводу поля напряжений цилиндрической оболочки с круговым отверстием при растяжении // Вестник Пермского национального исследовательского политехнического университета. Механика. 2021. № 2. С. 64–75. https://doi.org/10.15593/perm.mech/2021.2.07
  2. Kashtanova S. V., Rzhonsnitskiy A. V. Investigation of systems of the stress field problem of a cylindrical shell with a circular cutout under various boundary conditions // Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2022. Vol. 44. Art. 259. https://doi.org/10.1007/s40430-022-03534-7
  3. Лурье А. И. Концентрации напряжений в области отверстия на поверхности кругового цилиндра // Прикладная математика и механика. 1946. Т. 10. С. 397–406.
  4. Гузь А. Н. Цилиндрические оболочки, ослабленные отверстиями. Киев : Наукова думка, 1974. 271 с.
  5. Lekkerkerker J. G. On the Stress Distribution in Cylindrical Shells Weakened by a Circular Hole. Delft : Uitgeverij Waltman, 1965. 99 p.
  6. Naghdi A. K., Eringen A. C. Stress distribution in a circular cylindrical shell with a circular cutout // Archive of Applied Mechanics. 1965. Vol. 34, iss. 3. P. 161–172. https://doi.org/10.1007/BF00532170
  7. Eringen A. C., Naghdi A. K., Thiel C. C. State of Stress in a Circular Cylindrical Shell With a Circular Hole. Welding Research Council, 1965. 21 p. (Welding Research Council Bulletin, vol. 102).
  8. Foo S. S. B. On the limit analysis of cylindrical shells with a single cutout // International Journal of Pressure Vessels and Piping. 1992. Vol. 49, iss. 1. P. 1–16. https://doi.org/10.1016/0308-0161(92)90069-R
  9. Кабанов В. В., Железнов Л. П. Применение метода конечных элементов к расчету на прочность круговых цилиндрических оболочек с вырезами // Ученые записки ЦАГИ. 1985. Т. 16, № 3. С. 92–99. EDN: MWFNGB
  10. Shariati M., Akbarpour A. Ultimate strength analysis of combined loaded stainless steel circular tubes with hole // Journal of Basic and Applied Scientific Research. 2012. iss. 2 (8). P. 8457–8465.
  11. Lee S. E., Sahin S., Rigo P. Ultimate strength of cylindrical shells with cutouts // Ships and Offshore Structures. 2017. Vol. 12, iss. S1. P. 151–173. https://doi.org/10.1080/17445302.2016.1271592
  12. Kolodiazhnyi A., Mednikova M. The Influence of the deformation nonlinearity on stress concentration in cylindrical shells with holes under torsion // Materials Science Forum. 2019. Vol. 968. P. 548–559. https://doi.org/10.4028/www.scientific.net/MSF.968.548
  13. Chawla K., Ray-Chaudhuri S. Stress and strain concentration factors in orthotropic composites with hole under uniaxial tension // Curved and Layered Structures. 2018. Vol. 5, iss. 1. P. 213–231. https://doi.org/10.1515/cls-2018-0016
  14. Silpa V. J. K., Raghu Vamsi B. V. S., Gowtham Kumar K. Structural analysis of thin isotropic and orthotropic plates using finite element analysis // Indian Journal of Medical Ethics. 2017. Vol. 4, iss. 6. P. 17–27. https://doi.org/10.14445/23488360/IJME-V4I6P104
  15. Kashtanova S. V., Rzhonsnitskiy A. V., Gruzdkov A. A. On the issue of analytical derivation of stress state in a cylindrical shell with a circular hole under axial tension // Materials Physics and Mechanics. 2021. Vol. 47. P. 186–195. https://doi.org/10.18149/MPM.4722021_3
  16. Van Dyke P. Stresses about a circular hole in a cylindrical shell // AIAA Journal. 1965. Vol. 3, iss. 9. P. 1733–1742. https://doi.org/10.2514/3.3234

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».