Unitary extension principle on zero-dimensional locally compact groups

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

In this article, we obtain methods for constructing step  tight frames on an arbitrary locally compact zero-dimensional group. To do this, we use the principle of unitary extension. First, we indicate a method for constructing a step scaling function on an arbitrary zero-dimensional group. To construct the scaling function, we use an oriented tree and specify the conditions on the tree under which the tree generates the mask $m_0$ of a scaling function. Then we find conditions on the masks $m_0, m_1,\ldots  , m_q$ under which the corresponding wavelet functions $\psi_1, \psi_2,\ldots  ,\psi_q$ generate a tight frame. Using these conditions, we indicate a way of constructing such masks. In conclusion, we give examples of the construction of tight frames.

Авторлар туралы

Sergei Lukomskii

Saratov State University

ORCID iD: 0000-0003-3038-2698
Russia, 410026, Saratov, Astrahanskaya str., 83

Iuliia Kruss

Saratov State University

ORCID iD: 0000-0003-2146-5985
Russia, 410026, Saratov, Astrahanskaya str., 83

Әдебиет тізімі

  1. Mathematics in Image Processing / ed. by H. Zhao. 2013. 245 p. (IAS/Park City Mathematics Series. Vol. 19). https://doi.org/10.1090/pcms/019
  2. Ron A., Shen Z. Affine systems in L2(Rd): The analysis of the analysis operator // Journal of Functional Analysis. 1997. Vol. 148, iss. 2. P. 408–447. https://doi.org/10.1006/jfan.1996.3079
  3. Farkov Y., Lebedeva E., Skopina M. Wavelet frames on Vilenkin groups and their approximation properties // International Journal of Wavelets, Multiresolution and Information Processing. 2015. Vol. 13, iss. 5. 1550036 (19 p.) https://doi.org/10.1142/S0219691315500368
  4. Shah F. A., Debnath L. Tight wavelet frames on local fields // Analysis. 2013. Vol. 33, iss. 3. P. 293–307. https://doi.org/10.1524/anly.2013.1217
  5. Ahmad O., Bhat M. Y., Sheikh N. A. Construction of Parseval framelets associated with GMRA on local fields of positive characteristic // Numerical Functional Analysis and Optimization. 2021. Vol. 42, iss. 3. P. 344–370. https://doi.org/10.1080/01630563.2021.1878370
  6. Albeverio S., Evdokimov S., Skopina M. p-adic multiresolution analysis and wavelet frames // Journal of Fourier Analysis and Applications. 2010. Vol. 16. P. 693–714. https://doi.org/10.1007/s00041-009-9118-5
  7. Лукомский С. Ф. Кратномасштабный анализ на нульмерных группах и всплесковые базисы // Математическй сборник. 2010. Т. 201, № 5. С. 41–64. https://doi.org/10.4213/sm7580
  8. Агаев Г. Н., Виленкин Н. Я., Джафарли Г. М., Рубинштейн А. И. Мультипликативные системы функций и гармонический анализ на нульмерных группах. Баку : Элм, 1981. 180 c.
  9. Albeverio S., Khrennikov A. Yu, Shelkovich V. M. Theory of p-adic Distributions: Linear and Nonlinear Models. Cambridge : Cambridge University Press, 2010. 351 p. https://doi.org/10.1017/CBO9781139107167
  10. Lukomskii S. F. Step refinable functions and orthogonal MRA on p-adic Vilenkin groups // Journal of Fourier Analysis and Applications. 2014. Vol. 20, iss. 1. P. 42–65. https://doi.org/10.1007/s00041-013-9301-6
  11. Lukomskii S., Vodolazov A. p-adic tight wavelet frames. 12 mar 2022. https://doi.org/10.48550/arXiv.2203.06352

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).