Unitary extension principle on zero-dimensional locally compact groups

Cover Page

Cite item

Full Text

Abstract

In this article, we obtain methods for constructing step  tight frames on an arbitrary locally compact zero-dimensional group. To do this, we use the principle of unitary extension. First, we indicate a method for constructing a step scaling function on an arbitrary zero-dimensional group. To construct the scaling function, we use an oriented tree and specify the conditions on the tree under which the tree generates the mask $m_0$ of a scaling function. Then we find conditions on the masks $m_0, m_1,\ldots  , m_q$ under which the corresponding wavelet functions $\psi_1, \psi_2,\ldots  ,\psi_q$ generate a tight frame. Using these conditions, we indicate a way of constructing such masks. In conclusion, we give examples of the construction of tight frames.

About the authors

Sergei Feodorovich Lukomskii

Saratov State University

ORCID iD: 0000-0003-3038-2698
Russia, 410026, Saratov, Astrahanskaya str., 83

Iuliia Sergeevna Kruss

Saratov State University

ORCID iD: 0000-0003-2146-5985
Russia, 410026, Saratov, Astrahanskaya str., 83

References

  1. Mathematics in Image Processing / ed. by H. Zhao. 2013. 245 p. (IAS/Park City Mathematics Series. Vol. 19). https://doi.org/10.1090/pcms/019
  2. Ron A., Shen Z. Affine systems in L2(Rd): The analysis of the analysis operator // Journal of Functional Analysis. 1997. Vol. 148, iss. 2. P. 408–447. https://doi.org/10.1006/jfan.1996.3079
  3. Farkov Y., Lebedeva E., Skopina M. Wavelet frames on Vilenkin groups and their approximation properties // International Journal of Wavelets, Multiresolution and Information Processing. 2015. Vol. 13, iss. 5. 1550036 (19 p.) https://doi.org/10.1142/S0219691315500368
  4. Shah F. A., Debnath L. Tight wavelet frames on local fields // Analysis. 2013. Vol. 33, iss. 3. P. 293–307. https://doi.org/10.1524/anly.2013.1217
  5. Ahmad O., Bhat M. Y., Sheikh N. A. Construction of Parseval framelets associated with GMRA on local fields of positive characteristic // Numerical Functional Analysis and Optimization. 2021. Vol. 42, iss. 3. P. 344–370. https://doi.org/10.1080/01630563.2021.1878370
  6. Albeverio S., Evdokimov S., Skopina M. p-adic multiresolution analysis and wavelet frames // Journal of Fourier Analysis and Applications. 2010. Vol. 16. P. 693–714. https://doi.org/10.1007/s00041-009-9118-5
  7. Лукомский С. Ф. Кратномасштабный анализ на нульмерных группах и всплесковые базисы // Математическй сборник. 2010. Т. 201, № 5. С. 41–64. https://doi.org/10.4213/sm7580
  8. Агаев Г. Н., Виленкин Н. Я., Джафарли Г. М., Рубинштейн А. И. Мультипликативные системы функций и гармонический анализ на нульмерных группах. Баку : Элм, 1981. 180 c.
  9. Albeverio S., Khrennikov A. Yu, Shelkovich V. M. Theory of p-adic Distributions: Linear and Nonlinear Models. Cambridge : Cambridge University Press, 2010. 351 p. https://doi.org/10.1017/CBO9781139107167
  10. Lukomskii S. F. Step refinable functions and orthogonal MRA on p-adic Vilenkin groups // Journal of Fourier Analysis and Applications. 2014. Vol. 20, iss. 1. P. 42–65. https://doi.org/10.1007/s00041-013-9301-6
  11. Lukomskii S., Vodolazov A. p-adic tight wavelet frames. 12 mar 2022. https://doi.org/10.48550/arXiv.2203.06352

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».