On peculiarities of application of the auxiliary system approach for the generalized chaotic synchronization regime detection
- Авторлар: Gubenko P.P.1, Koronovskii A.A.1, Moskalenko O.I.1
-
Мекемелер:
- Saratov State University
- Шығарылым: Том 25, № 4 (2025)
- Беттер: 408-413
- Бөлім: Radiophysics, Electronics, Acoustics
- URL: https://journal-vniispk.ru/1817-3020/article/view/357324
- DOI: https://doi.org/10.18500/1817-3020-2025-25-4-408-413
- EDN: https://elibrary.ru/GQHDTE
- ID: 357324
Дәйексөз келтіру
Толық мәтін
Аннотация
Авторлар туралы
Pavel Gubenko
Saratov State University
ORCID iD: 0009-0003-4012-1878
410012, Russia, Saratov, Astrakhanskaya street, 83
Aleksei Koronovskii
Saratov State University
ORCID iD: 0000-0003-3585-317X
SPIN-код: 3882-6431
Scopus Author ID: 7004189995
ResearcherId: C-5597-2008
410012, Russia, Saratov, Astrakhanskaya street, 83
Ol’ga Moskalenko
Saratov State University
ORCID iD: 0000-0001-5727-5169
SPIN-код: 7186-3695
Scopus Author ID: 10038769200
ResearcherId: D-4420-2011
410012, Russia, Saratov, Astrakhanskaya street, 83
Әдебиет тізімі
- Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V. Synchronization: From Simple to Complex. Berlin, Springer, 2009. XIV, 426 p. https://doi.org/10.1007/978-3-540-72128-4
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Uiversal Concept in Nonlinear Sciences. Cambridge, Cambridge University Press, 2001. XIX, 411 p. https://doi.org/10.1119/1/1475332
- Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 1995, vol. 51, pp. 980–994. https://www.doi.org/10.1103/PhysRevE.51.980
- Koronovskii A. A., Moskalenko O. I., Selskii A. O. Intermittent generalized synchronization and modified system approach: Discrete maps. Phys. Rev. E, 2024, vol. 109, art. 064217. https://doi.org/10.1103/PhysRevE.109.064217
- Koronovskii A. A., Moskalenko O. I., Hramov A. E. On the use of chaotic synchronization for secure communication. Phys. Usp., 2009, vol. 52, no. 12, pp. 1213–1238. https://www.doi.org/10.3367/UFNe.0179.200912c.1281
- Kulagin N. D., Andreev A. V, Koronovskii A. A., Moskalenko O. I., Sergeev A. P., Badarin A. A., Hramov A. E. Intermittency in predicting the behavior of stochastic systems using reservoir computing. Phys. Rev. E, 2025, vol. 111, art. 024209. https://doi.org/10.1103/PhysRevE.111.024209
- Hramov A. E., Kulagin N. D., Pisarchik A. N., Andreev A. V. Strong and weak prediction of stochastic dynamics using reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2025, vol. 35, art. 033140. https://doi.org/10.1063/5.0252908
- Abarbanel H. D. I., Rulkov N. F., Sushchik M. M. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E, 1996, vol. 53, pp. 4528–4535. https://www.doi.org/10.1103/PhysRevE.53.4528
- Kocarev L., Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett., 1996, vol. 76, pp. 1816–1819. https://doi.org/10.1103/PhysRevLett.76.1816
- Pyragas K. Properties of generalized synchronization of chaos. Nonlinear Analysis: Modelling and Control (Vilnius, IMI), 1998, no. 3, pp. 101–129. https://doi.org/10.15388/NA.1998.3.0.15261
- Zheng Z., Hu G. Generalized synchronization versus phase synchronization. Phys. Rev. E, 2000, vol. 62, pp. 7882–7885. https://doi.org/10.1103/PhysRevE.62.7882
- Moskalenko O. I., Koronovskii A. A., Hramov A. E. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks. Phys. Rev. E, 2013, vol. 87, art. 064901. https://doi.org/10.1103/PhysRevE.87.064901
- González-Miranda J. M. Synchronization of symmetric chaotic systems. Phys. Rev. E, 1996, vol. 53, pp. 5656–5669. https://doi.org/10.1103/PhysRevE.53.5656
- González-Miranda J. M. Bistable generalized synchronization of chaotic systems. Computer Physics Communications, 1999, vol. 121–122, pp. 429–431.
- Pecora L. M., Carroll T. L. Synchronization in chaotic systems. Phys. Rev. Lett., 1990, vol. 64, pp. 821–824. https://doi.org/10.1103/PhysRevLett.64.821
- Guan S., Lai C.-H., Wei G. W. Bistable chaos without symmetry in generalized synchronization. Phys. Rev. E, 2005, vol. 71, art. 036209. https://doi.org/10.1103/PhysRevE.71.036209
- Grebogi C., Ott E., Yorke J. A. Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation. Phys. Rev. Lett., 1983, vol. 50, pp. 935–938. https://doi.org/10.1103/PhysRevLett.50.935
- Proshin Yu. N., Shakirov M. A. Modelirovanie i vizualizatsiya neline’nykh dinamicheskikh system. Chast’ 1. Tochechnye otobrazheniya [Modeling and Visualization of Nonlinear Dynamic Systems. Part 1. Point Mappings]. Kazan, Kazan State University Publ., 2017. 36 p. Available at: https://kpfu.ru/portal/docs/F1367493855/Tochechnye.otobrazheniya.pdf (accessed September 20, 2025) (in Russian).
- Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V. A Method to detect the characteristics of intermittent generalized synchronization based on calculation of probability of the synchronous regime observation. Tech. Phys. Lett., 2024, vol. 50, pp. 209–212. https://doi.org/10.1134/S1063785023180116
- Hramov A. E., Koronovskii A. A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators. Europhys. Lett., 2005, vol. 70, pp. 169–175. https://doi.org/10.1209/epl/i2004–10488–6
- Hramov A. E., Koronovskii A. A. Generalized synchronization: A modified system approach. Phys. Rev. E, 2005, vol. 71, art. 067201. https://doi.org/10.1103/PhysRevE.71.067201
Қосымша файлдар

