On peculiarities of application of the auxiliary system approach for the generalized chaotic synchronization regime detection

Cover Page

Cite item

Full Text

Abstract

Background and Objectives: In this paper we consider the peculiarity that arises during the generalized chaotic synchronization regime detection in systems with a complex attractor topology having internal symmetry. Materials and Methods: As the system under study we consider two modified Guckenheimer – Holmes discrete maps coupled unidirectionally. To detect the presence of generalized synchronization we calculate the spectrum of Lyapunov exponents and propose the modification of auxiliary system approach. Results: Considering that the symmetry in the dynamics of the autonomous response system can lead to multistability due to the drive system signal, the correct detection of generalized synchronization with the help of the auxiliary system approach may be complicated. Modification of the generalized synchronization criterion, which allows increasing the reliability of the method in such cases, has been proposed. Conclusion: The results obtained with the help of modified auxiliary system approach are in a good agreement with the calculation of Lyapunov exponents.

About the authors

Pavel Petrovich Gubenko

Saratov State University

ORCID iD: 0009-0003-4012-1878
410012, Russia, Saratov, Astrakhanskaya street, 83

Aleksei Aleksandrovich Koronovskii

Saratov State University

ORCID iD: 0000-0003-3585-317X
SPIN-code: 3882-6431
Scopus Author ID: 7004189995
ResearcherId: C-5597-2008
410012, Russia, Saratov, Astrakhanskaya street, 83

Ol’ga Igorevna Moskalenko

Saratov State University

ORCID iD: 0000-0001-5727-5169
SPIN-code: 7186-3695
Scopus Author ID: 10038769200
ResearcherId: D-4420-2011
410012, Russia, Saratov, Astrakhanskaya street, 83

References

  1. Balanov A. G., Janson N. B., Postnov D. E., Sosnovtseva O. V. Synchronization: From Simple to Complex. Berlin, Springer, 2009. XIV, 426 p. https://doi.org/10.1007/978-3-540-72128-4
  2. Pikovsky A., Rosenblum M., Kurths J. Synchronization: A Uiversal Concept in Nonlinear Sciences. Cambridge, Cambridge University Press, 2001. XIX, 411 p. https://doi.org/10.1119/1/1475332
  3. Rulkov N. F., Sushchik M. M., Tsimring L. S., Abarbanel H. D. I. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E, 1995, vol. 51, pp. 980–994. https://www.doi.org/10.1103/PhysRevE.51.980
  4. Koronovskii A. A., Moskalenko O. I., Selskii A. O. Intermittent generalized synchronization and modified system approach: Discrete maps. Phys. Rev. E, 2024, vol. 109, art. 064217. https://doi.org/10.1103/PhysRevE.109.064217
  5. Koronovskii A. A., Moskalenko O. I., Hramov A. E. On the use of chaotic synchronization for secure communication. Phys. Usp., 2009, vol. 52, no. 12, pp. 1213–1238. https://www.doi.org/10.3367/UFNe.0179.200912c.1281
  6. Kulagin N. D., Andreev A. V, Koronovskii A. A., Moskalenko O. I., Sergeev A. P., Badarin A. A., Hramov A. E. Intermittency in predicting the behavior of stochastic systems using reservoir computing. Phys. Rev. E, 2025, vol. 111, art. 024209. https://doi.org/10.1103/PhysRevE.111.024209
  7. Hramov A. E., Kulagin N. D., Pisarchik A. N., Andreev A. V. Strong and weak prediction of stochastic dynamics using reservoir computing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2025, vol. 35, art. 033140. https://doi.org/10.1063/5.0252908
  8. Abarbanel H. D. I., Rulkov N. F., Sushchik M. M. Generalized synchronization of chaos: The auxiliary system approach. Phys. Rev. E, 1996, vol. 53, pp. 4528–4535. https://www.doi.org/10.1103/PhysRevE.53.4528
  9. Kocarev L., Parlitz U. Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. Rev. Lett., 1996, vol. 76, pp. 1816–1819. https://doi.org/10.1103/PhysRevLett.76.1816
  10. Pyragas K. Properties of generalized synchronization of chaos. Nonlinear Analysis: Modelling and Control (Vilnius, IMI), 1998, no. 3, pp. 101–129. https://doi.org/10.15388/NA.1998.3.0.15261
  11. Zheng Z., Hu G. Generalized synchronization versus phase synchronization. Phys. Rev. E, 2000, vol. 62, pp. 7882–7885. https://doi.org/10.1103/PhysRevE.62.7882
  12. Moskalenko O. I., Koronovskii A. A., Hramov A. E. Inapplicability of an auxiliary-system approach to chaotic oscillators with mutual-type coupling and complex networks. Phys. Rev. E, 2013, vol. 87, art. 064901. https://doi.org/10.1103/PhysRevE.87.064901
  13. González-Miranda J. M. Synchronization of symmetric chaotic systems. Phys. Rev. E, 1996, vol. 53, pp. 5656–5669. https://doi.org/10.1103/PhysRevE.53.5656
  14. González-Miranda J. M. Bistable generalized synchronization of chaotic systems. Computer Physics Communications, 1999, vol. 121–122, pp. 429–431.
  15. Pecora L. M., Carroll T. L. Synchronization in chaotic systems. Phys. Rev. Lett., 1990, vol. 64, pp. 821–824. https://doi.org/10.1103/PhysRevLett.64.821
  16. Guan S., Lai C.-H., Wei G. W. Bistable chaos without symmetry in generalized synchronization. Phys. Rev. E, 2005, vol. 71, art. 036209. https://doi.org/10.1103/PhysRevE.71.036209
  17. Grebogi C., Ott E., Yorke J. A. Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation. Phys. Rev. Lett., 1983, vol. 50, pp. 935–938. https://doi.org/10.1103/PhysRevLett.50.935
  18. Proshin Yu. N., Shakirov M. A. Modelirovanie i vizualizatsiya neline’nykh dinamicheskikh system. Chast’ 1. Tochechnye otobrazheniya [Modeling and Visualization of Nonlinear Dynamic Systems. Part 1. Point Mappings]. Kazan, Kazan State University Publ., 2017. 36 p. Available at: https://kpfu.ru/portal/docs/F1367493855/Tochechnye.otobrazheniya.pdf (accessed September 20, 2025) (in Russian).
  19. Moskalenko O. I., Koronovskii A. A., Selskii A. O., Evstifeev E. V. A Method to detect the characteristics of intermittent generalized synchronization based on calculation of probability of the synchronous regime observation. Tech. Phys. Lett., 2024, vol. 50, pp. 209–212. https://doi.org/10.1134/S1063785023180116
  20. Hramov A. E., Koronovskii A. A. Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators. Europhys. Lett., 2005, vol. 70, pp. 169–175. https://doi.org/10.1209/epl/i2004–10488–6
  21. Hramov A. E., Koronovskii A. A. Generalized synchronization: A modified system approach. Phys. Rev. E, 2005, vol. 71, art. 067201. https://doi.org/10.1103/PhysRevE.71.067201

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».