Integrating forecasting of non-stationary processes represented by time series. overview
- Authors: Avdeeva Z.K.1, Kovriga S.V.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 112 (2024)
- Pages: 129-167
- Section: Control of social-economic systems
- URL: https://journal-vniispk.ru/1819-2440/article/view/284214
- ID: 284214
Cite item
Full Text
Abstract
Keywords
About the authors
Zinaida Konstantinovna Avdeeva
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: avdeeva@ipu.ru
Moscow
Svetlana Vadimovna Kovriga
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: kovriga@ipu.ru
Moscow
References
- АВДЕЕВА З.К., КОВРИГА С.В., ГРЕБЕНЮК Е.А. Анализ методов среднесрочного прогнозирования процессов со структурными сдвигами на финансовых и товарных рынках // Проблемы управления. – 2024. – №5 (в печати).
- АВДЕЕВА З.К., КОВРИГА С.В., ГРЕБЕНЮК Е.А. Фор-мирование среднесрочных помесячных прогнозов цен на сырье на основе экспертной и количественной информа-ции // Автоматизация в промышленности. – 2022. – №5. – С. 38–45.
- АВЕРКИН А.Н., ЯРУШЕВ С.А., ПАВЛОВ В.Ю. Когни-тивные гибридные системы поддержки принятия реше-ний и прогнозирования // Программные продукты и си-стемы. – 2017. – №4. – С. 632–642.
- АНДРИАНОВА Е.Г., ГОЛОВИН С.А., ЗЫКОВ С.В. и др. Обзор современных моделей и методов анализа времен-ных рядов динамики процессов в социальных, экономиче-ских и социотехнических системах // Russian Technologi-cal Journal. – 2020. – №8(4). – С. 7–45. – DOI: https://doi.org/10.32362/2500-316X-2020-8-4-7-45.
- АСТАФЬЕВА Е.В., ТУРУНЦЕВА М.Ю. Анализ возмож-ностей улучшения качества прогнозов цен на природные ресурсы методами комбинирования на основе регресси-онных оценок весов // Экономическое развитие России. – 2023. – Т. 30, №12. – С. 24–33.
- СЕМЕНОВ А.В. Анализ временных рядов в политической науке: возможности и ограничения // Политическая наука. – 2021. – №1. – С. 76–97.
- СУРКОВ А.А. Объединение экономических прогнозов с использованием экспертной информации // Статистика и экономика. – 2019. – №16(5). – С. 4–14.
- ФРЕНКЕЛЬ А.А., СУРКОВ А.А. Методологические под-ходы к улучшению точности прогнозирования путем объединения прогнозов // Вопросы статистики. – 2015. – №8. – С. 17–36.
- ЯРУШЕВ С.А., АВЕРКИН А.Н., ФЕДОТОВА А.В. Моду-лярная модель прогнозирования временных рядов на ос-нове нейро-нечетких сетей и когнитивного моделирова-ния // Нечеткие системы и мягкие вычисления. – 2017. – Т. 12, вып. 2. – С. 159–168.
- ABOLGHASEMI M., HURLEY J., ESHRAGH A. et al. De-mand forecasting in the presence of systematic events: Cases in capturing sales promotions // Int. Journal of Production Economics. – 2020. – Vol. 230. – 107892.
- ADYA M., LUSK E.J. Designing Effective Forecasting Deci-sion Support Systems: Aligning Task Complexity and Tech-nology Support / C. Jao (ed.) Decision Support Systems. – IntechOpen Limited. United Kingdom, 2012.
- ADYA M., LUSK E.J. Development and validation of a rule-based time series complexity scoring technique to support design of adaptive forecasting DSS // Decision Support Sys-tems. – 2016. – No. 83(3). – P. 70–82
- ARINZE B. Selecting appropriate forecasting models using rule induction // Omega. – 1994. – No. 22(6). – P. 647–658.
- ARMSTRONG J.S. Combining forecasts // In: Principles of Forecasting: A Handbook for Researchers and Practitioners / J.S. Armstrong (ed.). – Springer Nature, 2001. – P. 417–440.
- ARVAN M., FAHIMNIA B., REISI M. et al. Integrating hu-man judgement into quantitative forecasting methods: A re-view // Omega. – 2019. – Vol. 86. – P. 237–252. – DOI: https://doi.org/10.1016/j.omega.2018.07.012.
- AVDEEVA Z.K., GREBENYUK Е.А., KOVRIGA S.V. Raw Material Price Forecasting on Commodity Markets: Applica-tion of Expert and Quantitative Information // Advances in Systems Science and Applications. – 2022. – Vol 22, No. 4. – P. 126–143.
- AVDEEVA Z.K., GREBENYUK Е.А., KOVRIGA S.V. De-tection of structural shifts in commodity markets in the mode of situation and digital monitoring // IFAC-PapersOnLine. – 2023. – Vol. 56, Iss. 2. – P. 7778–7783.
- AZMY W.M., ATIYA A.F., EL-SHISHINY H. Forecast Combination Strategies for Handling Structural Breaks for Time Series Forecasting // In: Multiple Classifier Systems. MCS 2010. Lecture Notes in Computer Science / Eds.: N.E. Gayar, J. Kittler, F. Roli. – Springer, Berlin, Heidelberg. – 2010. – Vol. 5997. – DOI: https://doi.org/10.1007/978-3-642-12127-2_25.
- BADULESCU Y., CAÑAS F., CHEIKHROUHOU N. Judg-mental adjustment of demand forecasting models using so-cial media data and sentiment analysis within industry 5.0 ecosystems // Int. Journal of Information Management Data Insights. – 2024. – Vol. 4, Iss. 2. – 100272.
- BATES J.M., GRANGER C.W.J. The combination of fore-casts // Journal of the Operational Research Society. – 1969. – No. 20(4). – P. 451–468.
- BAYÜKŞAHINA Ü., ERTEKIN S. Improving forecasting accuracy of time series data using a new ARIMA-ANN hy-brid method and empirical mode decomposition // Neuro-computing. – 2019. – Vol. 361. – P. 151–163.
- BRUNHAM K.P., ANDERSON D.R. Model selection and multi-model inference: A practical information-theoretic ap-proach. – Springer-Verlag, Heidelberg, 2002. – 490 p.
- CHENG C., SA-NGASOONGSONG A., BEYCA O. et al. Time series forecasting for nonlinear and non-stationary processes: a review and comparative study // IISE Trans. – 2015. – Vol. 47(10). – P. 1053–1071.
- COLLOPY F., ARMSTRONG J.S. Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations // Management Science. – 1992. – No. 38(10). – P. 1394–1414.
- DE STEFANI J., BONTEMPI G. Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large-Scale Time Series // Front. Big Data. – 2021. – Vol. 4. – 690267.
- FELIX G., NÁPOLES G., FALCON R. et al. A review on methods and software for fuzzy cognitive maps // Artif Intell Rev. – 2019. – Vol. 52. – P. 1707–1737.
- FILDES R., GOODWIN P., LAWRENCE M. The design fea-tures of forecasting support systems and their effectiveness // Decision Support Systems. – 2006. – Vol. 42, Iss. 1. – P. 351–361.
- FRANSES F.H., VAN DIJK D. Combining expert adjusted forecasts // Journal of Forecasting. – 2019. – Vol. 38, Iss. 5. – P. 415–421.
- FULCHER B.D., JONES N.S. Highly comparative feature-based time-series classification // IEEE Trans. on Knowledge and Data Engineering. – 2014. – No. 26(12). – P. 3026–3037.
- GEORGAKIS A., PROFILIDIS V., BOTZORIS G.N. Fore-casting tourism demand using search engine data // Proc. of the 10th Int. Congress on Transportation Research (ICTR2021). – Rhodes, Greece. – 2021.
- GOODWIN P. Integrating management judgment and statis-tical methods to improve short-term forecasts // Omega. – 2002. –Vol. 30, Iss. 2. – P. 127–135.
- GOODWIN P., FILDES R. Forecasting with Judgment // In: The Palgrave Handbook of Operations Research / Eds.: S. Salhi, J. Boylan. – Palgrave Macmillan, Cham, 2022. – DOI: https://doi.org/10.1007/978-3-030-96935-6_16.
- GREBENYUK Е.А. Algorithms for Detecting Changes in the Properties of Non-Stationary Processes in the Monitoring Mode // Proc. of the 14th Int. Conf. "Management of Large-Scale System Development" (MLSD). – Moscow: IEEE. – 2021. – URL: https://ieeexplore.ieee.org/document/9600109.
- HOGARTH R.M., MAKRIDAKIS S. Forecasting and plan-ning: an evaluation // Management science. – 1981. – No. 27(2). – P. 115–138.
- HONG T., HAN I. Integrated approach of cognitive maps and neural networks using qualitative information on the World Wide Web: the KBNMiner // Expert Systems. – 2004. – No. 21(5). – P. 243–252.
- KOSKO B. Fuzzy cognitive maps // Int J Man Mach Stud. – 1986. – No. 24(1). – P. 65–75.
- LI X., KANG Y., LI F. Forecasting with time series imaging // Expert System with Applications. – 2020. – Vol. 160. – 113680.
- LIVIERIS I.E., PINTELAS P. A novel multi-step forecasting strategy for enhancing deep learning models’ performance // Neural Computing and Applications. – 2022. – Vol. 34. – P. 19453–19470.
- MAKRIDAKIS S., HOGARTH R., GAB A. Forecasting and uncertainty in the economic and business world // Int. Jour-nal of Forecasting. – 2009. – Vol. 25. – P. 794–812.
- MARMIER F., CHEIKHROUHOU N. Structuring and inte-grating human knowledge in demand forecasting: a judg-mental adjustment approach // Production Planning & Con-trol. – 2010. – No. 21(4). – P. 399–412.
- ORANG O., DE LIMA E SILVA P.C., GUIMARÃES F.G. Time series forecasting using fuzzy cognitive maps: A survey // Artif. Intell. Rev. – 2022. – DOI: https://doi.org/10.1007/s10462–022–10319–w.
- ORD J.K., FILDES R., KOURENTZES N. Principles of Business Forecasting. – Wessex Press Publishing Co, 2017.
- PERERA H.N., HURLEY J., FAHIMNIA B. et al. The hu-man factor in supply chain forecasting: A systematic review // European Journal of Operational Research. – 2019. – Vol. 274(2). – P. 574–600.
- PETROPOULOS F., KOURENTZES N., NIKOLOPOULOS K. et al. Judgmental selection of forecast-ing models // Journal of Operations Management. – 2018. – No. 60. – P. 34–46.
- PETROPOULOS F., APILETTI D. et al. Forecasting: theory and practice // Int. Journal of Forecasting. – 2022. – Vol. 38(3). – P. 705–871.
- POLAT С. Forecasting as a strategic decision-making tool: A review and discussion with emphasis on marketing man-agement // European Journal of Scientific Research. – 2008. – Vol. 20(2). – P. 419–442.
- PRUDÊNCIO R.B., LUDERMIR T.B. Meta-learning ap-proaches to selecting time series models // Neurocomputing. – 2004. – No. 61. – P.121–137.
- SAHOO D., SOOD N., RANI U. et al. Comparative Analysis of Multi-Step Time-Series Forecasting for Network Load Da-taset // Proc. of the 11th Int. Conf. on Computing, Commu-nication and Networking Technologies. – Kharagpur, India. – 2020. – P. 1–7. – DOI: https://doi.org/10.1109/ICCCNT49239.2020.9225449.
- SANDERS N.R., RITZMAN L.P. Bringing judgment into combination forecasts // J. Oper. Manag. – 1995. – No. 13. – P. 311–321.
- SANDERS N.R., RITZMAN L.P. Judgmental Adjustment of Statistical Forecasts // In: Principles of Forecasting: A Hand-book for Researchers and Practitioners / J.S. Armstrong (ed.). – Springer Nature, 2001. – P. 405–416.
- SHAN D., LU W., YANG J. The data-driven fuzzy cognitive map model and its application to prediction of time series // Int. Journal of Innovative Computing, Information and Con-trol. – 2018. – No. 14(5). – P. 1583–1602.
- TAIEB S., BONTEMPI G., ATIYA A. et al. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition // Ex-pert System with Applications. – 2012. – Vol. 39(8). – P. 7067–7083. – DOI: https://doi.org/10.1016/j.eswa.2012.01.039.
- TAIEB S.B., ATIYA A.F. A bias and variance analysis for multistep-ahead time series forecasting // IEEE Trans. Neural Netw. Learn. Syst. – 2016. – No. 27. – P. 62–76.
- TANG L., ZHANG C., LI L. et al. A multi-scale method for forecasting oil price with multi-factor search engine data // Applied Energy. – 2020. – Vol. 257. – 114033. – DOI: https://doi.org/10.1016/j.apenergy.2019.114033.
- THOMSON M.E., POLLOCK A.C., ÖNKAL D. et al. Com-bining forecasts: Performance and coherence // Int. Journal of Forecasting. – 2019. – Vol. 35, Iss. 2. – P. 474–484.
- WANG X., HYNDMAN R.J., LI F. et al. Forecast combina-tions: An over 50-year review // Int. Journal of Forecasting. – 2023. – Vol. 39, Iss. 4. – P. 1518–1547. – DOI: https://doi.org/10.1016/j.ijforecast.2022.11.005.
- WEBBY R., O’CONNOR M., LAWRENCE M. Time-series forecasting using domain knowledge // In: Principles of Forecasting: A Handbook for Researchers and Practitioners / J.S. Armstrong (ed.). – Springer Nature, 2001. – P. 389–403.
- WEBBY R., O'CONNOR M., EDMUNDSON B. Forecasting support systems for the incorporation of event information: an empirical investigation // Int. J. Forecast. – 2005. – Vol. 21. – P. 411–423.
Supplementary files
