Machine monitoring of text chats and detection of anomalies
- Authors: Mozaidze E.S.1, Zuev S.V.2
-
Affiliations:
- Belgorod State Technological University named after V.G. Shukhov
- V.I. Vernadsky Crimean Federal University
- Issue: No 109 (2024)
- Pages: 67-88
- Section: Information technologies in control
- URL: https://journal-vniispk.ru/1819-2440/article/view/284365
- DOI: https://doi.org/10.25728/ubs.2024.109.4
- ID: 284365
Cite item
Full Text
Abstract
About the authors
Elena Sergeevna Mozaidze
Belgorod State Technological University named after V.G. Shukhov
Email: mozaidze95@mail.ru
Belgorod
Sergei Valentinovich Zuev
V.I. Vernadsky Crimean Federal University
Email: sergey.zuev@bk.ru
Simferopol
References
- КУЗОВЛЕВ В.И., ОРЛОВ А.О. Выявление аномалий при прогнозном анализе данных // Вестник МГТУ им. Н.Э. Баумана. Сер. Приборостроение. – 2016. – № 5. – C. 75–85.
- МИКОВА С.Ю., ОЛАДЬКО В.С. Сетевые аномалии и причины их возникновения в экономических информационных системах // Издательский центр «ИУСЭР. – Экономика и социум. – 2015. – №3 (16) – С. 76–81.
- САВЕНКОВ П.А., ИВУТИН А.Н. Методы анализа естественного языка в задачах детектирования поведенческих аномалий // Известия ТулГУ. – Технические науки. – 2022. – №3. – С. 358–366.
- САВИЦКИЙ Д.Е., ДУНАЕВ М.Е., ЗАЙЦЕВ К.С. Выявление аномалий при обработке потоковых данных в реальном времени // Int. Journal of Open Information Technologies. – 2022. – №6. – С. 70–76.
- ЧАСТИКОВА В.А., КОЗАЧЁК К.В., ГУЛЯЙ В.Г. Методы обработки естественного языка в решении задач обнаружения атак социальной инженерии // Вестник Адыгейского государственного университета. – Сер. 4: Естественно-математические и технические науки. – 2021. – №4 (291). – С. 95–108.
- https://hadoop.apache.org/ (дата обращения: 01.10.2021).
- BENMAHDI D., RASOLOFONDRAIBE L., CHIEMENTIN X. et al. RT-OPTICS: real-time classification based on OP-TICS method to monitor bearings faults // Journal of Intelli-gent Manufacturing. – June 2019. – Vol. 30, Iss. 5. – P. 2157–2170.
- BORJ P.R., RAJA K., BOURS P. Online grooming detection: A comprehensive survey of child exploitation in chat logs // Knowledge-Based Systems. – 2023. Vol. 259. 110039. – DOI: https://doi.org/10.1016/j.knosys.2022.110039 (accessed 1 July 2023).
- GUPTA A., MATTA P., PANT B. Identification of Cyber-criminals in Social Media using Machine Learning // Int. Conf. on Smart Generation Computing, Communication and Networking (SMART GENCON). – Bangalore, India. – 2022. – P. 1–6. – doi: 10.1109/SMARTGENCON56628.2022.10084119.
- LEMAIRE V., ALAOUI ISMAILI O., CORNU´EJOLS A. et al. Predictive k-means with localmodels // In: Workshop LDRC–2020 (Workshop on Learning Data Representation for Clus-tering) in PAKDD–2020 (The 24th Pacific-Asia Conf. On Knowledge Discovery and DataMining). – May 2020. – Singapore. – P. 11–16.
- MD TAHMID RAHMAN LASKAR, JIMMY XIANGJI HUANG, SMETANA V. et al. Extending Isolation Forest for Anomaly Detection in Big Data via K-Means // ACM Trans. – Cyber-Phys. Syst. 5, 4, Article 41. – 2021. – 26 p. – DOI: https://doi.org/10.1145/3460976.
- SARVANI A., VENUGOPAL B., DEVARAKONDA N. Anomaly Detection Using K-means Approach and Outliers DetectionTechnique // In: Soft Computing: Theories and Applications. Advances in Intelligent Systems and Computing, Springer, Singapore. – 2019 – P. 742.
- SHERIFF M.Z., NOUNOU M.N. Improved Fault De-tection and Process Safety Using Multiscale Shewhart Charts // Chem. Eng. Process Technol. – 2017. – Vol. 8(2). – P. 1–16. – doi: 10.4172/2157-7048.100032.
- TALEB N.N. Black Swan and Domains of Statistics // The American Statistician. – 2007. – Vol. 61, No. 3.
- TSIGKRITIS T., GROUMAS G., SCHNEIDER M. On the Use of k-NN in Anomaly Detection // Journal of Information Security. – 2018. – Vol. 9. – P. 70–84.
- https://spark.apache.org/ (дата обращения: 01.10.2021).
- VANNEL Z., DONGHYUN K., DAEHEE S., Ahyoung Leea An unsupervised anomaly detection frame-work for detecting anomalies in real time through network system’s log files analysis // High-Confidence Computing. – 2021. – Vol. 1, Iss. 2.
- WANG Z., ZHOU Y.H., LI G.M. Anomaly Detection by Using Streaming K-Means and Batch K-Means // 5th IEEE Int. Conf. on Big Data Analytics (IEEE ICBDA 2020). – Xiamen, China, 8–11 May 2020. – P. 11–17.
- ZIMEK A., SCHUBERT E. Outlier Detection // Encyclopedia of Database Systems. – Springer New York, 2017. – doi: 10.1007/978-1-4899-7993-3_80719-1.
- ZUEV S., KABALYANTS P. On the black swan risk dynamical evaluation // Int. Journal of Risk Assessment and Management. –2022. – Vol. 25, No. 1/2. – P. 56–66.
Supplementary files
