Dynamic differentiation and smoothing of noisy signals specifying the trajectory of an unmanned aerial vehicle

Cover Page

Cite item

Full Text

Abstract

The problem of developing a complex approach to filtering and smoothing of reference trajectories, which are signal reference actions, and to recovery of their derivatives is considered on the example of an unmanned aircraft of the airplane type. To solve this problem, methods of design and algorithms for setting up a dynamic generator of acceptable trajectories are developed. The system of differential equations, which describes the generator of tasks, corresponds to the canonical model of the control plant "input - output". The output variables of the generator track the reference noisy and non-smooth vector signal of the reference actions. Thus, the generator is a tracking differentiator. To design its local links and corrective actions, smooth and bounded sigmoidal functions with bounded derivatives are used. This approach allows considering the restrictions on the speed and acceleration of a particular aircraft, so the output variables of the tracking differentiator generate a naturally smoothed spatial curve and its derivatives, which are used in the plant control system as a realizable reference trajectory. Numerical simulation results demonstrated the efficiency of the developed approach to dynamic differentiation and smoothing of vector signals both in the deterministic case and in the presence of noise. A comparative analysis of dynamic generators with different variants of additional low-pass filters is performed. The application of the developed approach is possible for processing the reference actions of various control plants, it is only necessary that their dynamic model be reduced to the canonical form.

About the authors

Julia Georgievna Kokunko

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: juliakokunko@gmail.com
Moscow

References

  1. АНТИПОВ А.С., КРАСНОВА С.А., УТКИН В.А. Синтез инвари-антных нелинейных одноканальных систем слежения с сигмои-дальными обратными связями с обеспечением заданной точности слежения // Автоматика и телемеханика. – 2022. – №1. – С. 40–66.
  2. ДЫЛЕВСКИЙ А.В., ЛОЗГАЧЕВ Г.И. Применение метода про-странства состояний для синтеза дифференциаторов // Автома-тика и телемеханика. – 1999. – №9. – C. 13–20.
  3. ЕМЕЛЬЯНОВ С.В., АФАНАСЬЕВ А.П. Дифференцирование сиг-нала в системах автоматического регулирования // Автоматика и телемеханика. – 2015. – №12. – С. 27–42.
  4. КОКУНЬКО Ю.Г., КРАСНОВА С.А. Два подхода к синтезу инва-риантной системы слежения для беспилотного летательного ап-парата // Управление большими системами. – 2020. – Вып. 85. – С. 113–142.
  5. КРАСНОВ Д.В., УТКИН А.В. Наблюдатель пониженного порядка для оценивания смешанных переменных в системах слежения при действии внешних несогласованных возмущений // Дифференци-альные уравнения. – 2020. – Т. 56, №12. – С. 1681–1694.
  6. ALSANOUSI A.A. Design and Optimization of Low Pass Filter. Lap Lambert Academic Publishing. – Sunnyvale, CA, USA, 2017.
  7. ANTIPOV A.S., KRASNOVA S.A., UTKIN V.A. Methods of Ensuring Invariance with Respect to External Disturbances: Overview and New Advances // Mathematics. – 2021. – Vol. 9(23). – P. 3140.
  8. ASTOFI D., ZACCARIAN L., JUNGERS M. On the use of low-pass filters in high-gain observers // Systems and Control Letters. – 2021. – Vol. 148. – P.104856.
  9. BUZIKOV M., GALYAEV A. Minimum-time lateral interception of a moving target by a Dubins car // Automatica. – 2021. – Vol. 135. – Art. No. 109968.
  10. DESSEN F. Optimizing Order to Minimize Low-Pass Filter Lag // Cir-cuits, Systems, and Signal Processing. – 2019. – Vol. 38. – P. 481–497.
  11. GUO B.-Z., ZHAO Z.-L. On convergence of tracking differentiator and application to frequency estimation of sinusoidal signals // Proc. 8th Asian Control Conference (ASCC). – 2011. – P. 1470–1475.
  12. KANATNIKOV A.N., KRISHCHENKO A.P. Terminal control of spa-tial motion of flying vehicles // Journal of Computer and System Sci-ences International. – 2008. – Vol. 47(5). – P. 718–731.
  13. KIKUUWE R., PASARIBU R., BYUN G. A First-Order Differentiator with First-Order Sliding Mode Filtering // IFAC-PapersOnLine. – 2019. – Vol. 52(16). – P. 771–776.
  14. KOKUNKO Y.G., KRASNOVA S.A., UTKIN V.A. Cascade Synthesis of Differentiators with Piecewise Linear Correction Signals // Autom. Remote Control. – 2021. – Vol. 82(7). – P. 1144–1168.
  15. KRASNOVA S.A. Estimating the Derivatives of External Perturba-tions Based on Virtual Dynamic Models // Autom. Remote Control. – 2020. – Vol. 81(5). – P. 897–910.
  16. LAMBERT E., ROMANO R., WALTING D. Optimal Path Planning with Clothoid Curves for Passenger Comfort // Proc. of the 5th Int. Conf. on Vehicle Technology and Intelligent Transport Systems, May 3–5, 2019, Heraklion, Greece. – P. 609–615.
  17. LEVANT A. Robust exact differentiation via sliding mode technique // Automatica. – 1998. – Vol. 34(3). – P. 379–384.
  18. LEVANT A., LIVNE M., YU X. Sliding-Mode-Based Differentiation and Its Application // IFAC-PapersOnLine. – 2017. – Vol. 50(1). – P. 1699–1704.
  19. RICHARD L., BURDEN J., DOUGLAS F. Numerical Analysis. – Brooks, Cole, 2000.
  20. ROSU H.C., MANCAS S.C., HSIEH C.-C. Generalized Cornu-type spirals and their Darboux parametric deformations // Phys. Lett. A. – 2019. – Vol. 383. – P. 2692–2697.
  21. SHANMUGAVEL M., TSOURDOS A., WHITE B.A., ZBIKOWSKI R. Differential Geometric Path Planning of Multiple UAVs // Trans. ASME. J. Dyn. Syst. Meas. Control. – 2005. – Vol. 129(5). – P. 620–632.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».