Method of signal extrapolation on two-dimensional antenna system using deep neural network algorithms to solve the super-resolution problem
- 作者: Rubinovich E.Y.1, Yurchenkov I.A.2, Nazarkin V.A.2
-
隶属关系:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Russian Technological University
- 期: 编号 113 (2025)
- 页面: 120-150
- 栏目: Information technologies in control
- URL: https://journal-vniispk.ru/1819-2440/article/view/289710
- ID: 289710
如何引用文章
全文:
详细
作者简介
Evgeny Rubinovich
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: rubinvch@gmail.com
Moscow
Ivan Yurchenkov
Russian Technological University
Email: yurchenkov@mirea.ru
Moscow
Vladimir Nazarkin
Russian Technological University
Email: vovannazark89@mail.ru
Moscow
参考
- ABTAHI T. et al. Accelerating convolutional neural networkwith FFT on embedded hardware // IEEE Trans. on Very LargeScale Integration (VLSI) Systems. – 2018. – Vol. 26, No. 9. –P. 1737–1749.
- AGARAP A.F. Deep learning using rectified linear units(relu) // ArXiv preprint. – 2018. – DOI: arXiv:1803.08375.
- ALMEIDA M.S., FIGUEIREDO M.A. Deconvolving Imageswith Unknown Boundaries Using The Alternating DirectionMethod Of Multipliers // IEEE Trans. Image Process. – 2013. –Vol. 22, No. 8. – P. 3074–3086.
- BOWEN R. S., CHANG H., HERRMANN C. et al. OCONet:Image Extrapolation by Object Completion // IEEE CVFConf. on Computer Vision and Pattern Recognition (CVPR),Nashville, TN, USA, – 2021. – P. 2307–2317. –doi: 10.1109/CVPR46437.2021.00234.
- CANDES E.J., FERNANDEZGRANDA C. Super-Resolutionfrom Noisy Data // Journal of Fourier Analysis andApplications. – 2013. – Vol. 19, No. 6. – P. 1229—1254.
- DA WANG Y., ARMSTRONG R., MOSTAGHIMI P. Superresolution convolutional neural network models for enhancingresolution of rock micro-ct images // ArXiv preprint. – 2019. –DOI: arXiv:1904.07470.
- DUDIK M., PHILLIPS S.J., SCHAPIRE R.E. MaximumEntropy Density Estimation with Generalized Regularizationand an Application to Species Distribution Modeling // Journalof Machine Learning Research. – 2007. – No. 8. –P. 1217–1260.
- ELASRI M., ELHARROUSS O., AL-MA’ADEED S. et al.Image Generation: A Review // Neural Processing Letters. –2022. – Vol. 54, No. 5. – doi: 10.1007/s11063-022-10777-x.
- FARTOOKZADEH M. Frequency diverse arrays (FDAs) vs.phased arrays: On the application of FDAs for securewireless communications // ArXiv preprint. – 2020. –DOI: arXiv:2004.08585.
- GOODFELLOW I. et al. Generative adversarial nets //Advances in Neural Information Processing Systems. – 2014. –Vol. 27.
- HU YI-DING, DENG WEI-YAO, WU GU-XIN et al.A wideband MUSIC algorithm using an improved empiricalwavelet transform // Measurement Science and Technology. –2024. – Vol. 36, No. 1. – doi: 10.1088/1361-6501/ad9516.
- KINGMA D.P. Adam: A method for stochastic optimization //ArXiv preprint. – 2014. – DOI: arXiv:1412.6980.
- LAGOVSKY B.A. Superresolution by Extrapolation forSolving Remote Sensing Problems // 25th Int. Crimean Conf.“Microwave and Telecommunication Technology”. ConferenceProceedings. – 2015. – Vol. 2. – P. 1144–1146.
- LEDIG C. et al. Photo-realistic single image super-resolutionusing a generative adversarial network // Proc. of the IEEEConf. on Computer Vision and Pattern Recognition. – 2017. –P. 4681–4690.
- LIU WANLI. Super resolution DOA estimation based on deepneural network // Scientific Reports. – 2020. – Vol. 10, No. 1. –doi: 10.1038/s41598-020-76608-y.
- LU Y., GUAN H., YANG K. et al. Improving the Accuracyof Direction of Arrival Estimation with Multiple Signal InputsUsing Deep Learning // Sensors (Basel). – 2024. – Vol. 24.No. 10. – P. 2971–2982. – doi: 10.3390/s24102971.
- MALEKZADEH P. et al. A Robust Quantile Huber Losswith Interpretable Parameter Adjustment in DistributionalReinforcement Learning // ICASSP 2024-2024 IEEE Int. Conf.on Acoustics, Speech and Signal Processing (ICASSP). – IEEE,2024. – P. 6120–6124.
- NILSSON J., AKENINE-MILLER T. Understanding ssim //ArXiv preprint. – 2020. – DOI: arXiv:2006.13846.
- O’SHEA K. An introduction to convolutional neural networks //ArXiv preprint. – 2015. – DOI: arXiv:1511.08458.
- PRATT H. et al. Fcnn: Fourier convolutional neural networks //Machine Learning and Knowledge Discovery in Databases:European Conf. – ECML PKDD 2017, Skopje, Macedonia,September 18–22, 2017, Proceedings, Part I 17. – SpringerInternational Publishing. – 2017. – P. 786–798.
- RONNEBERGER O., FISCHER P., BROX T. U-net: Convolutional networks for biomedical imagesegmentation // Medical image computing and computer-assisted intervention–MICCAI 2015: 18th Int. Conf. – Munich,Germany, October 5-9, 2015, proceedings, part III 18. –Springer International Publishing, –2015. – P. 234–241.
- SHCHUKIN A.A., PAVLOV A.E. Parameterization of UserFunctions in Digital Signal Processing for Obtaining AngularSuperresolution // Russian Technological Journal. – 2022. –Vol. 10, No. 4. – P. 38–43.
- TAN W.Q., HOU Y.G. Estimation Of Direction Of SourceArrival Based upon MUSIC and Capon // Journal of NanchangInstitute of Technology. – 2008. – Vol. 27, No. 1. – P. 20-23.
- TANG ZH., ZHOU K., XU Y. et al. An Estimation Methodfor Soft Fault Reflection Coefficient of Power Cable Basedon Sliding-Window TLS-ESPRIT // IEEE Trans. on PowerDelivery. – 02.10.2024. – Vol. 39, No. 6. – P. 3092–3100. –doi: 10.1109/TPWRD.2024.3452779.
- TIKHONOV A.N., ARSENIN V.YA. Methods of solving ill-posed problems // – Moscow.: Nauka, 1974
- UZUN I.S., AMIRA A., BOURIDANE A. FPGAimplementations of fast Fourier transforms for real-timesignal and image processing // IEEE Proc. on Vision, Imageand Signal Processing. – 2005. – Vol. 152, No. 3. –P. 283–296.
- WU LIU-LI, LIU ZHANG-MENG, HUANG ZHI-TAO. DeepConvolution Network for Direction of Arrival EstimationWith Sparse Prior // IEEE Signal Processing Letters. –2019. – Vol. 26, No. 11. – P. 1688–1692. –doi: 10.1109/LSP.2019.2945115.
- ZEILER M., KRISHNAN D., TAYLOR G. et al.Deconvolutional networks // Proc. of the IEEEComputer Society Conf. on Computer Vision andPattern Recognition. – 05.08.2010. – P. 2528–2535. –doi: 10.1109/CVPR.2010.5539957.
- ZHOU S., JIANG L. Modern description of Rayleigh’scriterion. // Physical Review A. – 2018. – Vol. 99. No. 1. –doi: 10.1103/PhysRevA.99.013808.
补充文件
