Optimization of aircraft assignment to airlines with fuzzy initial data
- Authors: Romanenko V.A.1
-
Affiliations:
- Samara National Research University
- Issue: No 115 (2025)
- Pages: 156-182
- Section: Control systems analysis and design
- URL: https://journal-vniispk.ru/1819-2440/article/view/306195
- ID: 306195
Cite item
Abstract
A variant of the problem of optimal assignment of aircraft of specified types and numbers on a given airline network has been solved. The distribution of aircraft by airline is one of the key problems determining the efficiency of an air transport company. The considered task is to determine for each airline the weekly number of aircraft flights, which ensures the maximum economic effect of passenger transportation. The novelty of the problem statement lies in the fact that the levels of demand for passenger transportation are not fully defined expertly set fuzzy values, which corresponds to the stage of preliminary schedule design. Optimization of aircraft assignment by airlines is formulated as an integer mathematical programming problem with a fuzzy criterion and clear constraints. Thanks to the use of the defuzzification technique, the fuzzy problem is reduced to an ordinary mathematical programming problem solved by the available effective methods based on accessible software. Using the IBM ILOG OPL software package, the solution of model examples of the problem in fuzzy and "crisp" formulations was obtained. The comparison revealed significant differences between the most significant results of solving the optimization problem in fuzzy and "crisp" formulations, which indicates the expediency of taking into account the fuzzy uncertainty of the initial data.
About the authors
Vladimir Alekseevich Romanenko
Samara National Research University
Email: vla_rom@mail.ru
Samara
References
- АНДРОНОВ А.М., ХИЖНЯК А.Н. Математические ме-тоды планирования и управления производственно-хозяйственной деятельностью предприятий граждан-ской авиации. – М.: Транспорт, 1977. – 215 с.
- ВАДЗИНСКИЙ Р.Н Справочник по вероятностным рас-пределениям. – СПб.: Наука, 2001. – 294 с.
- ДАНЦИГ Д.Б. Линейное программирование, его приме-нения и обобщения. – М.: Прогресс, 1966. – 600 с.
- ОРЛОВСКИЙ С.А. Проблемы принятия решений при не-чёткой исходной информации.– М.: Наука, 1981. – 208 с.
- ПЕГАТ А. Нечёткое моделирование и управление. – М.: БИНОМ. Лаборатория знаний, 2013. – 798 с.
- Приказ Министерства транспорта РФ от 12 декабря 2011 г. N 310 «Об утверждении Порядка формирования, утверждения и опубликования расписания регулярных воздушных перевозок пассажиров и (или) грузов, выпол-няемых перевозчиками, имеющими соответствующие лицензии». – URL: https://mintrans.gov.ru/documents/2/2207 (дата обращения: 10.12.2024).
- САКАЧ Р.В., ПИНАЕВ Е.Г., ГЛАДЫШЕВСКАЯ Г.Н. и др. Моделирование в планировании гражданской авиации. – М.: Транспорт, 1983. – 173 с.
- СТОРОЖЕВ С.В. Алгоритм двухпараметрической ап-проксимации нормального частотного распределения нечётким интервалом // Вестник Донецкого националь-ного университета. Серия А: Природные науки. – 2014. – №2. – С. 78–80.
- ABARA J. Applying integer linear programming to the fleet assignment problem // Interfaces. – 1989. – Vol. 19, No. 4. – P. 20–28. – doi: 10.1287/inte.19.4.20.
- BARNHART C., SMITH B. Quantitative Problem Solving Methods in the Airline Industry // International Series in Op-erations Research and Management Science. – Springer Sci-ence & Business Media, 2012. – 462 p. – doi: 10.1007/978-1-4614-1608-1.
- BAZARGAN M. Airline operations and scheduling. – Routledge, 2010. – 302 p.
- CLARKE L.W., HANE C.A., JOHNSON E.L. et al. Mainte-nance and crew considerations in fleet assignment // Trans-portation Science. – 1996. – Vol. 30, No. 3. – P. 249–260.
- CLARKE M., SMITH B. Impact of operations research on the evolution of the airline industry // Journal of Aircraft. – 2004. – Vol. 41, No. 1. – P. 62–72. – doi: 10.2514/1.900.
- DESAULNIERS G., DESROSIERS J., DUMAS Y. et al. Dai-ly aircraft routing and scheduling // Management Science. – 1997. – Vol. 43, No. 6. – P.841–855. – doi: 10.1287/mnsc.43.6.841.
- FERGUSON A.R., DANTZIG G.B. The problem of routing aircraft – a mathematical solution // Aeronaut. Engng. Rev. – 1955. – Vol. 14, No. 4. – P. 51–55.
- FERGUSON A.R., DANTZIG G.B. The allocation of aircraft to routes – an example of linear programming under uncer-tain demand // Manag. Sci. – 1956. – Vol. 3, No. 1. – P. 45–73. – doi: 10.1515/9781400884179-029.
- GARG A., AGARWAL Y., SRIVASTAVA R.K. et al. Inte-grated commercial and operations planning model for schedule design, aircraft rotation and crew scheduling in airlines // Networks. – 2024. – Vol. 83 , Iss. 4. – P. 653–672. – doi: 10.1002/net.22211.
- HANE C.A., BARNHART C., JOHNSON E.L. et al. The fleet assignment problem: Solving a large-scale integer pro-gram // Mathematical Programming. – 1995. – Vol. 70. – P. 211–232.
- KIZILOGLU K., SAKALLI U.S. Integrating Flight Schedul-ing, Fleet Assignment, and Aircraft Routing Problems with Codesharing Agreements under Stochastic Environment // Aerospace. – 2023. – Vol. 10, No. 12. – doi: 10.3390/aerospace10121031.
- NAUMANN M., SUHL L., FRIEDEMANN M. A stochastic programming model for integrated planning of re-fleeting and financial hedging under fuel price and demand uncer-tainty // Procedia – Soc. Behav. Sci. – 2012. – Vol. 54. – P. 47–55. – doi: 10.1016/j.sbspro.2012.09.724.
- NUGROHO A., SUHARTO A.M. Airline Fleet Assignment and Schedule Planning // Jurnal Manajemen Transportasi & Logistik. – 2014. – Vol. 1, No. 1. – P. 31–42. – doi: 10.54324/j.mtl.v1i1.5.
- PILLA V.L., ROSENBERGER J.M., CHEN V.C. et al. A sta-tistical computer experiments approach to airline fleet as-signment // IIE Trans. – 2008. – Vol. 40, No. 5. – P. 524–537. – doi: 10.1080/07408170701759734.
- REXING B., BARNHART C., KNIKER T.S. et al. Airline fleet assignment with time windows // Transportation Science. – 2000. – Vol. 34, No. 1. – P. 1–20. – doi: 10.1287/trsc.34.1.1.12277 .
- RUSHMEIER R.A., KONTOGIORGIS S.A. Advances in the optimization of airline fleet assignment // Transportation Sci-ence. – 1997. – Vol. 31, No. 2. – P. 159–169.
- SAFAK O., CAVUS O., AKTURK M.S. Multi-stage airline scheduling problem with stochastic passenger demand and non-cruise times // Transp. Res. Part B Methodol. – 2018. – Vol. 114. – P. 39–67. – doi: 10.1016/j.trb.2018.05.012.
- SHERALI H.D., BISH E.K., ZHU X. Airline fleet assignment concepts, models, and algorithms // European Journal of Operational Research. – 2006. – Vol. 172, No. 1. – P. 1–30. – doi: 10.1016/j.ejor.2005.01.056.
- XU Y., ADLER N., WANDELT S. et al. Competitive inte-grated airline schedule design and fleet assignment // Euro-pean Journal of Operational Research. – 2024. – Vol. 314, No. 1. – P. 32–50. – doi: 10.1016/j.ejor.2023.09.029.
- YAN C., BARNHART C., VAZE V. Choice-Based Airline Schedule Design and Fleet Assignment: A Decomposition Approach // Transportation Science. – 2022. – Vol. 56, No. 6. – P. 1410–1431. – doi: 10.1287/trsc.2022.1141.
- YAN S., TSENG C.-H. A passenger demand model for air-line flight scheduling and fleet routing // Computers and Op-erations Research. – 2002. – Vol. 29, No. 11. – P. 1559–1581. – doi: 10.1016/s0305-0548(01)00046-6.
- ZHOU L., CHOU C.-A., CHAOVALITWONGSE W.A. et al. Airline planning and scheduling: Models and solution meth-odologies // Front. Eng. Manag. – 2020. – Vol. 7, No. 1. – P. 1–26. – doi: 10.1007/s42524-020-0093-5.
Supplementary files


