The task of increasing labor productivity in machinery production
- Authors: Tsvirkun A.D.1, Dranko О.I.1, Rezchikov A.F.1, Stepanovskaya I.A.1, Bogomolov A.S.2, Kushnikov V.A.2
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Federal Research Center “Saratov Research Center of the RAS”, Saratov State University
- Issue: No 116 (2025)
- Pages: 6-30
- Section: Systems analysis
- URL: https://journal-vniispk.ru/1819-2440/article/view/306997
- ID: 306997
Cite item
Full Text
Abstract
About the authors
Anatoly Danilovich Tsvirkun
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: tsvirkun@ipu.ru
Moscow
Оleg Ivanovich Dranko
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: drankooi@ipu.ru
Moscow
Aleksandr Fedorovich Rezchikov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: rw4cy@mail.ru
Moscow
Iraida Aleksandrovna Stepanovskaya
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: irstepan@ipu.ru
Moscow
Aleksey Sergeevich Bogomolov
Federal Research Center “Saratov Research Center of the RAS”, Saratov State University
Email: bogomolov@iptmuran.ru
Saratov
Vadim Alekseevich Kushnikov
Federal Research Center “Saratov Research Center of the RAS”, Saratov State University
Email: kushnikoff@yandex.ru
Saratov
References
- АЛИЕВ И.М. Влияние цифровой экономики на произво-дительность труда // Экономика труда. – 2021. – Т. 8, №9. – С. 917–930.
- ВИКТОРОВА В.А., СИЛАКОВА Л.В. Выявление акту-альных компетенций для повышения производительно-сти труда населения в условиях цифровизации России // Экономика труда. – 2023. – Т. 10, №7. – С. 999–1018.
- ГНЕВАШЕВА В.А. Цифровые платформы занятости // РППЭ. – 2022. – №9(143). – С. 81–85.
- МЕЛКОЗЕРОВА Д.О., РУДЬ Н.Ю. Особенности приме-нения инструментов "JUST IN TIME" в современной рос-сийской экономике // E-Management. – 2021. – №1. – С. 85–94.
- МИРОНОВА О.А., БОГДАНОВА Р.М. Анализ зарубеж-ного опыта использования факторов повышения произ-водительности труда на предприятии // Вестник РГЭУ РИНХ. – 2021. – №2(74). – С. 122–128.
- СТУКЕН Т.Ю., ЛАПИНА Т.А., КОРЖОВА О.С. Оценка влияния цифровизации на производительность труда в организации (на примере промышленных предприятий) // Вестник ОмГУ. Серия: Экономика. – 2023. – №2. – С. 74–79.
- ШАРЫЙ С.П. Конечномерный интервальный анализ. – Новосибирск: XYZ, 2019. – 635 с.
- BATWARA A., SHARMA V., MAKKAR M. et al. Towards smart sustainable development through value stream map-ping – a systematic literature review // Heliyon. – 2023. – Vol. 9, No. 5. – DOI: https://doi.org /10.1016/j.heliyon.2023.e15852.
- BOUSDEKIS A., LEPENIOTI K. et al. A Review of Data-Driven Decision-Making Methods for Industry 4.0 Mainte-nance Applications // Electronics. – 2021. – Vol. 10, No. 7. – DOI: https://doi.org /10.3390/electronics10070828.
- CELIK A.K., OZCELIK F. Assembly line rebalancing prob-lem with human-robot collaboration and a hyper-matheuristic solution approach // Computers & Industrial Engineering. – 2025. – Vol. 200. – DOI: https://doi.org/10.1016/j.cie.2024.110795.
- CHANG Q., WASEEM M. From Nash Q-learning to Nash-MADDPG: Advancements in multiagent control for multi-product flexible manufacturing systems // Journal of Manu-facturing Systems. – 2024. – Vol. 74. – P. 129–140. – DOI:https://doi.org/10.1016/j.jmsy.2024.03.004.
- DATTA D., GUTHRIE J. Human Resource Management and Labor Productivity: Does Industry Matter? //Academy of Management Journal. – 2005. – Vol. 48, No. 1. – DOI: https://doi.org/10.5465/AMJ.2005.15993158.
- DMYTRIYEV Y., CARNEVALE M., GIBERTI H. Enhanc-ing flexibility and safety: collaborative robotics for material handling in end-of-line industrial operations // Procedia Computer Science. – 2024. – Vol. 232. – P. 2588–2597. – DOI: https://doi.org/10.1016/j.procs.2024.02.077.
- DOAN H., TRAN M., VU V. et al. Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects // Measurement. – 2023. – Vol. 207. – DOI: https://doi.org/10.1016/j.measurement.2022.112351.
- DUAN D., CHEN S., FENG Z. et al. Industrial Robots and Firm Productivity // Structural Change and Economic Dy-namics. – 2023. – Vol. 67. – P. 388–406.
- FRANKE F., FRANKE S., RIEDEL R. AI-based Improve-ment of Decision-makers’ Knowledge in Production Plan-ning and Control // IFAC-PapersOnLine. – 2022. – Vol. 55, No. 10. – P. 2240–2245. – DOI: https://doi.org//10.1016/j.ifacol.2022.10.041.
- IMAI M. Kaizen: The Key To Japan's Competitive Success. – New York: McGraw-Hill Education, 1986. – 260 p.
- IANG Y., DAI P., FANG P. et al. A2-LSTM for predictive maintenance of industrial equipment based on machine learning // Computers & Industrial Engineering. – 2022. – Vol. 172, Part A. – DOI: https://doi.org/10.1016/j.cie.2022.108560.
- JUSTUS V., KANAGACHIDAMBARESAN G.R. Intelligent Single-Board Computer for Industry 4.0: Efficient Real-Time Monitoring System for Anomaly Detection in CNC Ma-chines // Microprocessors and Microsystems. – 2022. – Vol. 93, No. 2. – DOI: https://doi.org/10.1016/j.micpro.2022.104629.
- KRISHNAN T., KHAN A., ALQURNI J. Aggregate Produc-tion Planning and Scheduling in the Industry 4.0 Environ-ment // Procedia Computer Science. – 2022. – Vol. 204, No. 2 – P. 784–793. – DOI: https://doi.org/10.1016/j.procs.2022.08.095.
- KHAN M., SINGH K., KHAN W. A critical study on the implementation of operation, control and maintenance tech-niques for flexible manufacturing systems in small scale in-dustries // Materials Today: Proceedings. – 2023. – DOI: https://doi.org/10.1016/j.matpr.2023.05.225.
- KUMAR P. Failure prediction using artificial intelligence for heavy duty equipment // Materials Today: Proceedings. – 2022. – Vol. 66, No. 5. – P. 3154–3161. – DOI: https://doi.org/10.1016/j.matpr.2022.08.026.
- KUMAR S., NATHAN V., ASHIQUE S. et al. Productivity enhancement and cycle time reduction in Toyota production system through jishuken activity – Case study // Materials Today: Proceedings. – 2021. – Vol. 37, No. 2. – P. 964–966. – DOI: https://doi.org/10.1016/j.matpr.2020.06.181
- LEON R. Employees’ reskilling and upskilling for industry 5.0: Selecting the best professional development pro-grammes // Technology in Society. – 2023. – Vol. 75, No. 6. – P. 102393. –DOI: https://doi.org/10.1016/j.techsoc.2023.102393.
- MAYNEZ-GUADERRAMA A., LÓPEZ V., URÍAS A. La importancia de la gestión de recursos humanos para la manufactura esbelta // Estudios Gerenciales. – 2024. – Vol. 40, No. 171. – P. 193–203. – DOI: https://doi.org/10.18046/j.estger.2024.171.6450
- MURTAZA A., SAHER A., ZAFAR M. et al. Paradigm shift for predictive maintenance and condition monitoring from Industry 4.0 to Industry 5.0: A systematic review, challenges and case study // Results in Engineering. – 2024. – Vol. 24. – P. 102935. – DOI: https://doi.org/10.1016/j.rineng.2024.102935.
- PENG J., WANG D., ZHAO J. et al. Meta-learning en-hanced adaptive robot control strategy for automated PCB assembly // Journal of Manufacturing Systems. – 2025. – Vol. 78. – P. 46–57. – DOI: https://doi.org/10.1016/j.jmsy.2024.11.009.
- POPOV A. Modern Approaches to the Implementation and Use of Lean Production Model // BIO Web of Conferences. – 2023. – Vol. 76. – DOI: https://doi.org/10.1051/bioconf/20237602002.
- RANDHAWA J., AHUJA I. 5S implementation methodolo-gies: Literature review and directions // Int. Journal of Productivity and Quality Management (IJPQM). – 2017. – Vol. 20, No. 1. – P. 48–74. – DOI: https://doi.org/10.1504/IJPQM.2017.080692.
- RIZQI Z., CHOU S. Neuroevolution reinforcement learning for multi-echelon inventory optimization with delivery op-tions and uncertain discount // Engineering Applications of Artificial Intelligence. – 2024. – Vol. 134, No. 9. – DOI: https://doi.org/10.1016/j.engappai.2024.108670
- ROMERO L., CONTRERAS A. Applying Value Stream Mapping in Manufacturing: A Systematic Literature Review // IFAC-PapersOnLine. – 2017. – Vol. 50. – Issue 1. – P. 1075–1086. – https://doi.org/10.1016/j.ifacol.2017.08.385
- SAGAR D. WAGH, SUMEDH N. CHIWANDE Implementa-tion of Manufacturing Execution System (MES) to Increase Productivity and Competitiveness in the Manufacturing Sec-tor // Int. Journal for Research in Applied Science and Engi-neering Technology. – 2024. – Vol. 12, Iss. IV. – P. 3703–3714. – DOI: https://doi.org/10.22214/ijraset.2024.60682.
- SHAHIN M., MAGHANAKI M., HOSSEINZADEH A. et al. Improving operations through a lean AI paradigm: a view to an AI-aided lean manufacturing via versatile convolutional neural network // Int J Adv Manuf Technol. – 2024. – Vol. 133. – P. 5343–5419. – DOI: https://doi.org/10.1007/s00170-024-13874-4.
- SHAO G., KIBIRA D., FRECHETTE S. Digital Twins for Advanced Manufacturing: The Standardized Approach // In: Grieves M., Hua E.Y. (eds) Digital Twins, Simulation, and the Metaverse. Simulation Foundations, Methods and Appli-cations. – Springer, Cham, 2024. – P. 145–169. – DOI: https://doi.org/10.1007/978-3-031- 69107-2_7.
- SILVA A., SIMÕES A., BLANC R. Supporting decision-making of collaborative robot (cobot) adoption: The devel-opment of a framework // Technological Forecasting and So-cial Change. – Elsevier, 2024. – Vol. 204(C). – P. 123406. – DOI: https://doi.org/10.1016/j.techfore.2024.123406.
- SILVESTRI L., FORCINA A., INTRONA V. et al. Mainte-nance transformation through Industry 4.0 technologies: a systematic literature review // Computers in Industry. – 2020. – Vol. 123. – https://doi.org/10.1016/j.compind.2020.103335.
- SUBRAMANIYAN C., PRAKASH S., BHUVANESH N. et al. Study based on the reduction of lot time by implement-ing set production and FMS in the traditional batch produc-tion system // Materials Today: Proceedings. – 2021. – Vol. 45, Part 2. – P. 502–506. – DOI: https://doi.org/10.1016/j.matpr.2020.02.102.
- TRANAB M., ZHANG S., DOANC H. et al. Machine learn-ing and IoT-based approach for tool condition monitoring: A review and future prospects // Measurement. – 2023. – Vol. 207. – DOI: https://doi.org /10.1016/j.measurement.2022.112351.
- WANG Y., WANG X., CHEN S. et al. Integrated optimiza-tion of multi-station multi-robot assembly welding line: Ap-plication for automotive industry // Expert Systems with Ap-plications. – 2025. – Vol. 267. – P. 126116. – DOI: https://doi.org/10.1016/j.eswa.2024.126116.
- XU G., QIU Y., JINGYU Q. Artificial intelligence and labor demand: An empirical analysis of Chinese small and micro enterprises // Heliyon. – 2024. – Vol. 10, No. 3. – DOI: https://doi.org/10.1016/j.heliyon.2024.e33893.
- YAN N., WU T., WANG J. et al. Industry spillover effects of robot applications on labor productivity: Evidence from China // Economic Analysis and Policy. – 2025. – Vol. 229, No. 1. – P. 1272–1286. – DOI: https://doi.org/10.1016/j.jebo.2024.106858.
- ZHAO Y., SAID R., ISMAIL N. Impact of industrial robot on labour productivity: Empirical study based on industry panel data // Innovation and Green Development. – 2024. – Vol. 3, No. 2. – DOI: https://doi.org /10.1016/j.igd.2024.100148.
Supplementary files
