Compensation of interference in airborne electromagnetic systems and modeling of the geological environment by the inversion method in the processing of airborne electrical survey data

Cover Page

Cite item

Full Text

Abstract

Various methods of induced interference compensation for the EQUATOR system and several modifications of the EM4H onboard electromagnetic system were compared. Two modifications of the EM4H were investigated: the system with a transmitter loop mounted on the fuselage of the An-3 aircraft and the system with a loop towed by the Eurocopter AS350B3 helicopter. Two methods of modeling transmitter signal interference are considered: in the form of a stationary systematic component of measurements and in the form of a stationary field vector rigidly connected to the transmitter. To implement the second approach, two additional dipoles are used in EM4N and EQUATOR to determine the relative positions of the transmitter and receiver. The analysis was performed for data obtained during the flights at high altitudes with no response from the ground. The following statistical parameters of signals remaining after interference compensation were analyzed: standard deviation and the difference between the minimum and maximum values. It is shown that the best compensation result is obtained by an approach that takes into account the movement of the receiver relative to the field source (transmitter). The next step was to provide interpretation of data with the objective of estimating important geophysical characteristics. For each of studied systems Kalman filter algorithm was applied providing resistivity maps, which have been compared with respect to resolution.

About the authors

Leo Nikolaevich Vlasov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: Лев Николаевич Власов
Moscow

Dmitry Vladimirovich Kaplun

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: dvkaplun@yandex.ru
Moscow

Ekaterina Alekseevna Tretyakova

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: ekaterina_tretikova@mail.ru
Moscow

Dmitrii Kirillovich Khliustov

V.A. Trapeznikov Institute of Control Sciences of RAS

Email: hlustov.d@gmail.com
Moscow

References

  1. ВОЛКОВИЦКИЙ А.К., КАРШАКОВ Е.В., ПОПО-ВИЧ В.В. Низкочастотная индуктивная аэроэлектро-разведочная система ЕМ-4Н // Записки Горного инсти-тута. – 2009. – Т. 183. – С. 224–227.
  2. ВОЛКОВИЦКИЙ А.К., КАРШАКОВ Е.В., МОЙЛА-НЕН Е.В. Новая вертолетная электроразведочная си-стема ЭКВАТОР для метода АМПП // Приборы и систе-мы разведочной геофизики. – 2010. – №02(32). – С. 27–29.
  3. ЖДАНОВ М.С. Электроразведка: Учебник для вузов. – М.: Недра, 1986. – 316 с.
  4. КАРШАКОВ Е.В., Применение фильтра Калмана для решения обратных задач в аэроэлектроразведке // EAGE Инженерная и рудная геофизика, 2018 г.
  5. МОЙЛАНЕН Е.В. Современные методы аэроэлектро-разведки // Физика Земли. – 2022. – №5. – С. 171–180.
  6. ПАВЛОВ Б.В., ВОЛКОВИЦКИЙ А.К., КАРШАКОВ Е.В. Низкочастотная электромагнитная система относи-тельной навигации и ориентации // Гироскопия и нави-гация. – 2010. – С. 3–15.
  7. ТХОРЕНКО М.Ю., КАРШАКОВ Е.В., ПАВЛОВ Б.В. и др. Алгоритм позиционирования подвижного объекта в низкочастотном электромагнитном поле // Автомати-ка и телемеханика. – 2015. – №11. – С. 160–173.
  8. ХЛЮСТОВ Д.К. Моделирование эффекта индуктивно вызванной поляризации в частотных данных аэроэлек-троразведки // Управление большими системами. – 2025. – Вып. 114. – С. 108–121.
  9. BARABANOVA L.P., BARABANOV O.O. Effective solu-tion of the problem of electromagnetic positioning based on two-axial radiator // Journal of Mathematical Sciences. – 2021. – Vol. 255, No. 5. – P. 551–560.
  10. HODGES G. The power of frequency domain: When you should be using it // Extended Abstracts of the 6th Int. AEM Conference & Exhibition, 2013. – 5 p.
  11. KARSHAKOV E., MOILANEN E. Combined interpretation of time domain and frequency domain data // Proc. of 7th Int. Workshop on Airborne Electromagnetics, 2018.
  12. LEGAULT J.M. Airborne Electromagnetic Systems – State of the Art and Future Directions // CSEG Recorder. – 2015. – Vol. 40, No. 6. – P. 38–49.
  13. SMITH R. S. Tracking the Transmitting-Receiving Offset in Fixed-Wing Transient EM Systems: Methodology and Appli-cation // Exploration Geophysics. – 2001. – Vol. 32. – P.14–19.
  14. TELFORD W., GELDART L., SHERIFF R. Applied geophys-ics. – Cambridge University Press, 1990.
  15. VOVENKO T., MOILANEN E., VOLKOVITSKII A. et al. New Abilities of Quadrature EM Systems // Papers of the 13th SAGA Biennial and 6th Int. AEM Conf., Mpumalanga, South Africa, 2013. – P. 1–4.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».