Data assimilation in neutronics modelling: current status and development prospects
- Authors: Andrianov A.A.1, Andrianova O.N.1
-
Affiliations:
- Obninsk Institute for Nuclear Power Engineering NRNU MEPhI
- Issue: No 104 (2023)
- Pages: 118-134
- Section: Control of technological systems and processes
- URL: https://journal-vniispk.ru/1819-2440/article/view/364070
- DOI: https://doi.org/10.25728/ubs.2023.104.5
- ID: 364070
Cite item
Full Text
Abstract
About the authors
Andrei Alekseevich Andrianov
Obninsk Institute for Nuclear Power Engineering NRNU MEPhI
Email: andreyandrianov@yandex.ru
Obninsk
Olga Nikolaevna Andrianova
Obninsk Institute for Nuclear Power Engineering NRNU MEPhI
Email: o.n.andrianova@yandex.ru
Obninsk
References
АНДРИАНОВ А.А., АНДРИАНОВА О.Н., ГОЛОВ-КО Ю.Е. Методика оценки интегральных эксперимен-тов для использования в задаче оценки точности нейтронно-физических расчетов // Депонированная ру-копись. – № 68-В2021. – 2021. – 58 с. АНДРИАНОВ А.А., АНДРИАНОВА О.Н., КОРО-ВИН Ю.А. и др. Программный комплекс оптимизации параметров нейтронно-физических моделей с учетом результатов интегральных экспериментов // Известия вузов. Ядерная энергетика. – 2023. – №2. – С. 148–161. ВАНЬКОВ А.А., ВОРОПАЕВ А.И., ЮРОВА Л.Н. Анализ реакторно-физического эксперимента. – М.: Атомиздат, 1977. – 88 с. УСАЧЕВ Л.Н., БОБКОВ Ю.Г. Теория возмущений и пла-нирование эксперимента в проблеме ядерных данных для реакторов. – М.: Атомиздат, 1980. – 88 c. УСЫНИН Г.Б., КАРАБАСОВ А.С., ЧИРКОВ В.А. Опти-мизационные модели реакторов на быстрых нейтронах. – М.: Атомиздат, 1981. – 232 с. CACUCI D.G., BUJOR M. Sensitivity and uncertainty anal-ysis, data assimilation, and predictive best-estimate model calibration // Handbook of Nuclear Engineering. Springer, Boston. – 2010. – DOI: https://doi.org/10.1007/978-0-387-98149-9_17 (дата обращения: 18.03.2023). DRAGT J.B. Statistical considerations on techniques for ad-justment // RCN-122. – Reactor Centrum Nederland. – 1970. – P. 85–105. IVANOV E., SAINT-JEAN C., SOBES V. Nuclear data as-similation, scientific basis and current status // EPJ Nuclear Sci. Technol. – 2021. – DOI: https://doi.org/10.1051/epjn/2021008 (дата обращения: 18.03.2023). GRECHANUK P., RISING M.E., PALMER T.S. Using ma-chine learning methods to predict bias in nuclear criticality safety // Jour. of Computational and Theoretical Transport. – 2019. – Vol. 47. – P. 552–565. HOEFER A., BUSS O. Assessing and improving model fit-ness in MOCABA data assimilation // Ann. Nucl. Energy. – 2021. – Vol. 162. – P. 10–21. HOEFER A., BUSS O., HENNEBACH M. et.al. MOCABA: A general Monte Carlo–Bayes procedure for improved pre-dictions of integral functions of nuclear data // Ann. Nucl. Energy. – 2015. – Vol. 77. – P. 514–521. HOEFER A., BUSS O., SCHMID M. Applications of Multi-variate Normal Bayesian Models in Nuclear Engineering // Nuclear Technology. – 2019. – Vol. 205, No. 12. – P. 1578–1587. KONING A.J. Bayesian Monte Carlo method for nuclear data evaluation // Nucl. Data Sheets. – 2015. – Vol. 123. – P. 207–213. NEWELL Q., SANDERS C. Stochastic uncertainty propaga-tion in Monte Carlo depletion calculations // Nuclear Sci-ence and Engineering. – 2015. – Vol. 179, No. 3. – P. 253–263. PALMIOTTI G., SALVATORES M. The role of experiments and of sensitivity analysis in simulation validation strategies with emphasis on reactor physics // Ann. Nucl. Energy. – 2013. – Vol. 52. – P. 10–21. ROCHMAN D., SCIOLLA C.M. Nuclear Data Uncertainty Propagation for a Typical PWR Fuel Assembly with Burnup // Nuclear Engineering and Technology. – 2014. – Vol. 46, No. 3. – P. 353–362. ROWLANDS J.L., MACDOUGALL L.D. The use of integral measurements to adjust cross-sections and predicted reactor properties // Proc. of the Int. Conf. on Fast Critical Experi-ments and their Analysis. – ANL-7320. – 1966. REARDEN B.T. Perturbation theory eigenvalue sensitivity analysis with Monte Carlo techniques // Nuclear Sci. Eng. – 2004. – Vol. 146, No. 3. – P. 367–382. SIEFMAN D., HURSIN M., ROCHMAN D. et.al. Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments // Eur. Phys. J. Plus. – 2018. – Vol. 133, No. 12. – P. 429–438. http://www.inis.iaea.org (дата обращения: 18.03.2023).
Supplementary files


