Modeling of neurons and their interactions. overview of approaches and methods
- Authors: Zhilyakova L.Y.1, Kuznetsov O.P.1
-
Affiliations:
- V.A. Trapeznikov Institute of Control Sciences of RAS
- Issue: No 106 (2023)
- Pages: 6-51
- Section: Systems analysis
- URL: https://journal-vniispk.ru/1819-2440/article/view/364077
- DOI: https://doi.org/10.25728/ubs.2023.106.1
- ID: 364077
Cite item
Full Text
Abstract
About the authors
Liudmila Yur'evna Zhilyakova
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: zhilyakova@ipu.ru
Moscow
Oleg Petrovich Kuznetsov
V.A. Trapeznikov Institute of Control Sciences of RAS
Email: olpkuz@yandex.ru
Moscow
References
АРТЁМОВ Н.М., САХАРОВ Д.А. Хачатур Седракович Коштоянц. – М.: Наука, 1986. Гл. 3. Работы по химиче-ским основам механизмов нервной деятельности. – С. 106–162. БАЗЕНКОВ Н.И., ВОРОНЦОВ Д.Д., ДЬЯКОНОВА В.Е., ЖИЛЯКОВА Л.Ю. и др. Дискретное моделирование межнейронных взаимодействий в мультитрансмит-терных сетях // Искусственный интеллект и принятие решений. – М.: Изд. ФИЦ «Информатика и управление» РАН, 2017. – №2. – С. 55–73. БАЛАБАН П.М., ВОРОНЦОВ Д.Д., ДЬЯКОНОВА В.Е., ДЬЯКОНОВА Т.Л. и др. Центральные генераторы пат-терна (CPGs). // Журн. высш. нерв. деят. – 2013. – №63(5). – С. 1–21. БОЛДЫШЕВ Б.А., ЖИЛЯКОВА Л.Ю. Нейромодуляция как инструмент управления нейронными ансамблями // Проблемы управления. – 2021. – №2. – С. 76–84. ДЬЯКОНОВА В.Е. Нейротрансмиттерные механизмы контекст-зависимого поведения // Журн. высш. нерв. де-ят. – 2012. – №62(6). – С. 1–17. ДЬЯКОНОВА В.Е., САХАРОВ Д.А. Пострефлекторная нейробиология поведения. – М.: Издательский дом ЯСК, 2019. – 592 с. ЕМЕЛЬЯНОВ-ЯРОСЛАВСКИЙ Л.Б. Интеллектуальная квазибиологическая система. Индуктивный автомат. – М.: Наука, 1990. – 111 c. КУЗНЕЦОВ О.П. Сложные сети и распространение ак-тивности // Автоматика и телемеханика. – 2015. – №12. – С. 3–26. КУЗНЕЦОВ О.П. Стационарные ансамбли в пороговых сетях // Автоматика и телемеханика. – 2017. – №3. – С. 111–129. КУЗНЕЦОВ О.П., БАЗЕНКОВ Н.И., БОЛДЫШЕВ Б.А., ЖИЛЯКОВА Л.Ю. и др. Асинхронная дискретная модель химических взаимодействий в простых нейронных си-стемах // Искусственный интеллект и принятие решений. – М.: Изд. ФИЦ «Информатика и управление» РАН. – 2018. – №2. – С. 3–20. МЕДВЕДЕВ С.В. Мозг против мозга: новеллы о мозге. – М.: Бослен, 2017. – 145 с. МИНСКИЙ М., ПЕЙПЕРТ С. Персептроны. – М.: Мир, 1971. – 261 с. РАБИНОВИЧ М.И., МЮЕЗИНОЛУ М.К. Нелинейная ди-намика мозга: Эмоции и интеллектуальная деятель-ность // Успехи физических наук. – 2010. – Т. 180, № 4. – C. 371–386. РОЗЕНБЛАТТ Ф. Принципы нейродинамики: Перцеп-троны и теория механизмов мозга. (Principles of Neuro-dynamic: Perceptrons and the Theory of Brain Mecha-nisms.) – М.: Мир, 1965. – 480 с. САХАРОВ Д.А. Биологический субстрат генерации по-веденческих актов // Журн. общ. биологии. – 2012. – №73(5). – С. 334–348. САХАРОВ Д.А. Синаптическая и бессинаптическая мо-дели нейронной системы // Простые нервные системы. Ч.2. – Казань: КГУ, 1985. – С.78–80. ЧАПЛИНСКАЯ Н.В. Обучение спайковой нейронной се-ти на основе изменения временных задержек на синап-сах // Сборник трудов XXIV Международной научно-технической конференции «Нейроинформатика-2022». – Москва: МФТИ, 2022. – С. 78–87. ШУМСКИЙ С.А. Машинный интеллект. Очерки по тео-рии машинного обучения и искусственного интеллекта. – М: РИОР, 2022. – 340 с. ШУМСКИЙ С.А. Воспитание машин: Новая история разума. – М.: Альпина нон-фикшн, 2021. – 174 с. ABBOTT L.F. Lapique’s introduction of the integrate-and-fire model neuron (1907) // Brain Research Bulletin. – 1999. – No. 50 (5/6). – P. 303–304. AGNATI L.F., GUIDOLIN D., GUESCINI M., GENEDA-NI S. et al. Understanding wiring and volume transmission // Brain Res. Rev. – 2010. – No. 64 – P. 137–159. AIELLO G.L., BACH-Y-RITA P. Nonsynaptically connected neural nets // European Symposium on Artificial Neural Networks (ESANN 2000), Methuen, Bruges. – 2000. – P. 425–428. ALENCAR B. M., CANÁRIO J.P., NETO R.L., PRAZERES C. et al. Fog-DeepStream: A new approach combining LSTM and Concept Drift for data stream analyt-ics on Fog computing // Internet of Things. – 2023. – Vol. 22. – 100731. ALNAJJAR F., MURASE K. Sensor-fusion in spiking neural network that generates autonomous behavior in real mobile robot // IEEE Int. Joint Conf. on Neural Networks – 2008 (IEEE World Congress on Computational Intelligence). – IEEE, 2008. – P. 2200–2206. AONUMA H., MEZHERITSKIY M., BOLDYSHEV B., TO-TANI Y.et al The Role of Serotonin in the Influence of In-tense Locomotion on the Behavior Under Uncertainty in the Mollusk Lymnaea stagnalis // Frontiers in Physiology. – 2020. – Vol. 11. – N Art. 221. BACH-Y-RITA P., AIELLO G.L. Nerve length and volume in synaptic versus diffusion neurotransmission: a model // NeuroReport. – 1996. – No. 7. – P. 1502–1504. BARGMANN C.I. Beyond the connectome: How neuromod-ulators shape neural circuits // BioEssays. – 2012. – Vol. 34, No.6. – P. 458–465. BARONCHELLI A., FERRER-I-CANCHO R., PASTOR-SATORRAS R., CHATER N.et al. Networks in Cognitive Science // Trends in Cognitive Sciences. – 2013. – Vol. 17, No. 7. – P. 348–360. BAZENKOV N.I., BOLDYSHEV B.A., DYA-KONOVA V.E., KUZNETSOV O.P. Simulating Small Neu-ral Circuits with a Discrete Computational Model // Biol. Cybern. – 2020. – No. 114. – P. 349–362. BENJAMIN B.V., GAO P., MCQUINN E., CHOUDHARY S. et al. Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations // Proc. of the IEEE. – 2014. – Vol. 102, No. 5. – P. 699–716. BENJAMIN P.R. Distributed network organization underly-ing feeding behavior in the mollusk Lymnaea // Neural Syst Circuits. – 2012. – Vol. 2, No. 4. BISWAS S.S. Role of Chat GPT in Public Health // Ann Bi-omed Eng 51. – 2023. – P. 868–869. BISWAS S.S. Potential Use of Cha GPT in Global Warm-ing // Ann Biomed Eng 51. – 2023. – P. 1126–1127. BOUGANIS A., SHANAHAN M. Training a spiking neural network to control a 4-dof robotic arm based on spike tim-ing-dependent plasticity // IEEE Int. Joint Conf. on Neural Networks – 2010 (IJCNN–2010). – IEEE, 2010. – P. 1–8. BREZINA V. Beyond the wiring diagram: signalling through complex neuromodulator networks // Philos. Trans. R. Soc. Lond. B. Biol. Sci. – 2010. – Vol. 365(1551). – P. 2363–2374. BUBECK S., CHANDRASEKARAN V., ELDAN R., GEHRKE J. et al. Sparks of artificial general intelligence: Early experiments with gpt-4 // arXiv preprint arXiv:2303.12712. – 2023. BULLMORE E., SPORNS O. Complex brain networks: graph theoretical analysis of structural and functional sys-tems // Nature Reviews Neuroscience. – 2009. – No. 10. – P. 186–198. BYRNE J. Learning and memory: a comprehensive refer-ence. – Academic Press. – 2017. – 2402 p. DAVIES M., SRINIVASA N., LIN T. et al. Loihi: A Neuro-morphic Manycore Processor with OnChip Learning // IEEE Micro. – 2018.– Vol. 38, No. 1. – P. 82–99. DENG B., LI Q., LIU X., CAO Y. et al. Chemoconnec-tomics: Mapping Chemical Transmission in Drosophila // Neuron. – 2019. – Vol. 101, Iss. 5, 6. – P. 876–893. DENG L., YU D. Deep Learning: Methods and Applica-tions // Foundations and Trends in Signal Processing. – 2014. – Vol. 7, Nos. 3–4. – P. 197–387. DITZLER G., POLIKAR R., ROSEN G. Multi-Layer and Re-cursive Neural Networks for Metagenomic Classification // IEEE Trans. on NanoBioscience. – 2015. – Vol. 14, No. 6. – P. 608–616. DONG L., XU B. CIF: Continuous Integrate-And-Fire for End-To-End Speech Recognition // IEEE Int. Conf. on Acoustics, Speech and Signal Processing – 2020 (ICASSP–2020), Barcelona, Spain. – 2020. – P. 6079–6083. DONG Y., YANG S., LIANG Y., WANG G. Neuromorphic dynamics near the edge of chaos in memristive neurons // Chaos, Solitons & Fractals. – 2022. – Vol. 160. – 112241. DOROGOVTSEV S. Lectures on Complex Networks. – Ox-ford: Oxford Univer. Press, 2010. – 144 p. DOYA K. Metalearning and Neuromodulation // Neural Networks. – 2002. – Vol. 15(4-6). – P. 495–506. DYAKONOVA T.L., DYAKONOVA V.E. Coordination of rhythm-generating units via NO and extrasynaptic neuro-transmitter release // J. Comp. Physiol. A. – 2010. – Vol. 196, No. 8. – P. 529–541. DYAKONOVA T.L., SULTANAKHMETOV G.S., MEZHE-RITSKIY M.I., SAKHAROV D.A. et al. Storage and Eras-ure of Behavioural Experiences at the Single Neuron Level // Scientific Reports. – 2019. – Vol. 9, No. 1. – 14733. ESTEVA A., CHOU K., YEUNG S. et al. Deep learning-enabled medical computer vision // npj Digit. Med. – 2021. – Vol. 4, No. 5. FAN W., CHEN X., WU H., LI Z. et al. Firing patterns and synchronization of Morris-Lecar neuron model with memris-tive autapse // AEU – Int. Journal of Electronics and Com-munications. – 2023. – Vol. 158. – 154454. FANG H., WANG Y., HE J. Spiking neural networks for cortical neuronal spike train decoding // Neural Computa-tion. – 2010. – Vol. 22, No. 4. – P. 1060–1085. FITZHUGH R. Impulses and physiological states in theoreti-cal models of nerve membrane // Biophysical J. – 1961. – Vol. 1. – P. 445–466. FORTUNA L., BUSCARINO A. Spiking neuron mathemati-cal models: a compact overview // Bioengineering. – 2023. – Vol. 10(2). – P. 174. FURBER S.B., GALLUPPI F., TEMPLE S., PLANA L.A. The spinnaker project // Proc. of the IEEE. – 2014. – Vol. 102, No. 5. – P. 652–665. GALVES A., LÖCHERBACH E. Infinite Systems of Interact-ing Chains with Memory of Variable Length – A Stochastic Model for Biological Neural Nets // Journal of Statistical Physics. – 2013. – Vol. 151. – P. 896–921. GERSTNER W. Population dynamics of spiking neurons: fast transients, asynchronous states, and locking // Neural Computation. – 2000. – Vol. 12 (1) – P. 43–89. GERSTNER W., KISTLER W. Spiking Neuron Models: Sin-gle Neurons, Populations, Plasticity. Cambridge: Cambridge University Press, 2002. – 480 p. GHIGLIAZZA R., HOLMES P. Minimal models of bursting neurons: The effects of multiple currents and timescales // SIAM J. Appl. Dyn. Syst. – 2004. – Vol. 3, No. 4. – P. 636–670. GHIGLIAZZA R., HOLMES P. A Minimal Model of a Cen-tral Pattern Generator and Motoneurons for Insect Locomo-tion // SIAM J. Appl. Dyn. Syst. – 2004. – Vol. 3, No. 4. – P. 671–700. GOODFELLOW I., BENGIO Y., COURVILLE A. Deep Learning. – MIT Press, 2016. – 787 p. GÓRSKI T., DEPANNEMAECKER D., DESTEXHE A. Conductance-based adaptive exponential integrate-and-fire model // Neural Computation. – 2021. – Vol. 33(1). – P. 41–66. GRAUPNER M., GUTKIN B. Modeling nicotinic neuro-modulation from global functional and network levels to nAChR based mechanisms // Acta Pharmacologica Sinica. – 2009. – Vol. 30. – P. 681–693. GUTKIN B., DEHAENE S, CHANGEUX J.P. A neurocom-putational hypothesis for nicotine addiction // Proc Natl Acad Sci USA. – 2006. – Vol. 103. – P. 1106–1111. HARRIS-WARRICK R.M. Neuromodulation and flexibility in Central Pattern Generator networks // Current Opinion in Neurobiology. – 2011. – Vol. 21, No. 5. – P. 685–692. HAYKIN S. Neural Networks and Learning Machines (3rd Edition). – Prentice Hall, 2009. – 944 p. HAZAN H., CABY S., EARL C., SIEGELMANN H. et al. Memory via Temporal Delays in weightless Spiking Neural Network // arXiv preprint arXiv:2202.07132. – 2022. HILL-YARDIN E.L., HUTCHINSON M.R., LAYCOCK R., SPENCER S.J. A Chat (GPT) about the future of scientific publishing // Brain Behav Immun. – 2023. – Vol. 110. – P. 152–154. HINDMARSH J.L., ROSE R.M. A model of neuronal burst-ing using three coupled first order differential equations // Proc. of the Royal Society of London. Series B. Biological Sciences. – 1984. – Vol. 221, No. 1222. – P. 87–102. HINTON G.E., OSINDERO S., TEH Y.W. A fast learning algorithm for deep belief nets // Neural Computation. – 2006. – Vol. 18. – P. 1527–1554. HODGKIN A.L., HUXLEY A.F. A quantitative description of membrane current and its applications to conduction and excitation in nerve // J. Physiol. (Lond.). –1952. – Vol. 116. – P. 500–544. HOPFIELD J.J. Neural networks and physical systems with emergent collective computational abilities // Proc. of Na-tional Academy of Sciences USA. – 1982. – Vol. 79, No. 8. – P. 2554–2558. HOPKINS M., PINEDA-GARCÍA G., BOGDAN P.A., FURBER S.B. Spiking neural networks for computer vision // Interface Focus. – 2018. – Vol. 8. – No. 4. – 20180007. HU X., LIU C. Dynamic property analysis and circuit im-plementation of simplified memristive Hodgkin–Huxley neu-ron model // Nonlinear Dynamics. – 2019. – No. 97. – P. 1721–1733. IZHIKEVICH E. Neural excitability, spiking and bursting // Int. Journal of Bifurcation and Chaos. – 2000. – Vol. 10, No. 6. – P. 1171–1266. IZHIKEVICH E. Which Model to Use for Cortical Spiking Neurons? // IEEE Trans. on Neural Networks. – 2004. – Vol. 15, No. 5. – P.1063–1070. JACKSON M.O. Social and Economic Networks. – Prinston Univer. Press, 2010. – 520 p. JAFARIAN M., JOHANSSON K.H. Synchronization of quadratic integrate-and-fire spiking neurons: Constant ver-sus voltage-dependent couplings // IEEE 58th Conf. on De-cision and Control 2019 (CDC–2019), Nice, France. – 2019. – P. 4711–4716. JENIFER P.I.R., KANNAN S. Deep Learning with Optimal Hierarchical Spiking Neural Network for Medical Image Classification // Comput. Syst. Sci. Eng. – 2023. – Vol. 44, No. 2. – P. 1081–1097. KHERADPISHEH S.R., GANJTABESH M., THORPE S.J., MASQUELIER T. STDP-based spiking deep convolutional neural networks for object recognition // Neural Networks. – 2018. – Vol. 99. – P. 56–67. KHOSHKHOU M., MONTAKHAB A. Spike-timing-dependent plasticity with axonal delay tunes networks of izhikevich neurons to the edge of synchronization transition with scale-free avalanches // Frontiers in systems neurosci-ence. – 2019. – Vol. 13. – P. 73. KLEENE S.C. Representation of Events in Nerve Nets and Finite Automata // In: Automata Studies / Eds.: C.E. Shannon, J. McCarthy. – Princeton, Princeton Universi-ty Press, 1956. (Рус. пер.: КЛИНИ С.К. Представление событий в нервных сетях и конечных автоматах // В кн. Автоматы / Под ред. К.Э. Шеннона и Дж.Маккарти. – М., ИЛ, 1956. C. 15–67). KOCH C., SEGEV I. Methods in neuronal modeling: from ions to networks. – Cambridge, Massachusetts: MIT Press. –1999. – 687 p. LECUN Y., BENGIO Y., HINTON G. Deep learning // Na-ture. – 2015. – Vol. 521, No. 7553. – P. 436–444. LEVAKOVA M., KOSTAL L., MONSEMPÈS C., LUCAS P. et al. Adaptive integrate-and-fire model reproduces the dy-namics of olfactory receptor neuron responses in a moth // Journal of the Royal Society Interface. – 2019. – Vol. 16, No. 157. – 20190246. LIN J.W., FABER D.S. Modulation of synaptic delay during synaptic plasticity // Trends in neurosciences. – 2002. – Vol. 25, No. 9. – P. 449–455. LIN H., WANG C., SUN Y., YAO W. Firing multistability in a locally active memristive neuron model // Nonlinear Dyn. – 2020. – No. 100. – P. 3667–3683. LIU CH., GOEL P., KAESER P.S. Spatial and temporal scales of dopamine transmission // Nat Rev Neurosci. – 2021. – Vol. 22, No. 6. – P. 345–358. LIU Y., IU H.H.C., QIAN Y. Implementation of Hodgkin-Huxley neuron model with the novel memristive oscillator // IEEE Trans. on Circuits and Systems II: Express Briefs. – 2021. – Vol. 68, No. 8. – P 2982–2986. MAASS W., SCHMITT M. On the complexity of learning for spiking neurons with temporal coding // Information and Computation. – 1999. – Vol. 153, No. 1. – P. 26–46. MANOHAR N., PRASAD S.S. Use of ChatGPT in academic publishing: a rare case of seronegative systemic lupus ery-thematosus in a patient with HIV infection // Cureus. – 2023. – Vol. 15, No. 2. – e34616. MARDER E., BUCHER D. Central Pattern Generators and the Control of Rhythmic Movements // Current Biology. – 2001. – Vol. 11, No. 23. – Р. 986–996. MCCULLOCH W.S., PITTS W. A logical calculus of the ideas immanent in nervous activity // Bull. Math. Biophys. – 1943. – Vol. 5. – P.115–133. (Рус. пер.: Мак-Каллок У.С., Питтс В. Логическое исчисление идей, от-носящихся к нервной активности // Автоматы: Сб. – М., 1956. – С. 363–384.) MILES V., GIANI S., VOGT O. Recursive encoder network for the automatic analysis of STEP files // J Intell Manuf. – 2023. – Vol. 34. – P. 181–196. MORRIS C., LECAR H. Voltage Oscillations in the barnacle giant muscle fiber // Biophys. J. – 1981. – Vol. 35, No. 1. – P. 193–213. MOSBACHER Y., KHOYRATEE F., GOLDIN M. et al. To-ward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation // Scientific reports. – 2020. – Vol. 10. – 7512. MULLONEY B., SMARANDACHE C. Fifty years of CPGs: two neuroethological papers that shaped the course of neu-roscience // Front. Behav. Neurosci. – 2010. – Vol. 4, No. 45. – P. 1–8. MUNI S. S., RAJAGOPAL K., KARTHIKEYAN A., ARUN S. Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling // Chaos, Solitons & Fractals. – 2022. – Vol. 155. – 111759. NAGUMO J., ARIMOTO S., YOSHIZAWA S. An active pulse transmission line simulating nerve axon // Proc. IRE. – 1962. – Vol. 50. – P. 2061–2070. NADAFIAN A., GANJTABESH M. Bio-plausible Unsuper-vised Delay Learning for Extracting Temporal Features in Spiking Neural Networks // arXiv preprint arXiv:2011.09380. – 2020. NAZARI S., KEYANFAR A., VAN HULLE M.M. Neu-romorphic circuit based on the un-supervised learning of biologically inspired spiking neural network for pattern recognition // Engineering Applications of Artificial Intelli-gence. – 2022. – Vol. 116. – 105430. NOBUKAWA S., NISHIMURA H., YAMANISHI T. Chaotic Resonance in Typical Routes to Chaos in the Izhikevich Neuron Model // Sci Rep. – 2017. – Vol. 7. – 1331. OUBARI O. Precise timing and computationally efficient learning in neuromorphic systems: Diss. – Sorbonne univer-sité, 2020. PAUGAM-MOISY H., MARTINEZ R., BENGIO S. De-lay learning and polychronization for reservoir computing // Neurocomputing. – 2008. – Vol. 71. – Nos. 7–9. – P. 1143–1158. PEHLE C., BILLAUDELLE S., CRAMER B., KAISER J. et al. The BrainScales-2 Accelerated Neuromorphic System With Hybrid Plasticity // Frontiers in Neuroscience. – 2022. – Vol. 16. PEI J., DENG L., SONG S. et al. Towards artificial gen-eral intelligence with hybrid Tianjic chip architecture // Na-ture. – 2019.– Vol. 572, No. 7767. – P. 106–111. PÉREZ-CARRASCO J.A., ACHA B., SERRANO C., CAMUNAS-MESA L. et al. Fast vision through frameless event-based sensing and convolutional processing: Applica-tion to texture recognition // IEEE Trans. on Neural Net-works. – 2010. – Vol. 21, No. 4. – P. 609–620. PIETRAS B., DEVALLE F., ROXIN A., DAF-FERTSHOFER A. et al. Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks // Physical Review E. – 2019. – Vol. 100, No. 4. – 042412. RAIMONDO L., HEIJ J., PRIOVOULOS N., KUNDU P. et al. Advances in resting state fMRI acquisitions for func-tional connectomics // NeuroImage. – 2021. – Vol. 243. – 118503. RAJAGOPAL K., MOROZ I., RAMAKRISHNAN B., KARTHIKEYN A. et al. Modified Morris–Lecar neuron model: effects of very low frequency electric fields and of magnetic fields on the local and network dynamics of an ex-citable media // Nonlinear Dynamics. – 2021. – Vol. 104, No. 4. – P. 4427–4443. RATHI N., CHAKRABORTY I., KOSTA A., SENGUPTA A. et al. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware // ACM Computing Surveys. – 2023. – Vol. 55, No. 12. – H. 1–49. RATNASINGAM S., MCGINNITY T.M. A spiking neu-ral network for tactile form-based object recognition // IEEE Int. Joint Conf. on Neural Networks – 2011. – IEEE, 2011. – P. 880–885. ROBERTS A. CONTE D., HULL M., MERRISON-HORT R. et al. Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior? // The Journal of Neuroscience. – 2014. – Vol. 34, No. 2. – P. 608–621. ROBERTS P.D. Classification of Temporal Patterns in Dynamic Biological Networks // Neural Computation: Mas-sachusetts Institute of Technology. – 1998. – Vol. 10. No. 7. – P. 1831–1846. SAKURAI A., KATZ P.S. The central pattern generator underlying swimming in dendronotus iris: a simple half-center network oscillator with a twist // J Neurophysiol. – 2016. – Vol. 116, No. 4. – P. 1728–1742. SAXE A., NELLI S., SUMMERFIELD C. If deep learn-ing is the answer, what is the question? // Nat Rev Neurosci. – 2021. – Vol. 22. – P. 55–67. SCHEMMEL J., GRÜBL A., HARTMANN S. et al. Live demonstration: A scaled-down version of the BrainScaleS wafer-scale neuromorphic system // IEEE Int.Symposium on Circuits and Systems – 2012 (ISCAS–2012). – P. 702. SERRANO-BALBONTÍN A.J., TEJADO I., VINAGRE B.M. Fractional Integrate-and-Fire Neuron: An-alog Realization and Application to Neuromorphic Control // IEEE Int. Conf. on Fractional Differentiation and Its Appli-cations – 2023 (ICFDA–2023). – 2023. – P. 1–6. SHAFIEI M., PARASTESH F., JALILI M., JAFARI S. et al. Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks // Eur. Phys. J. B. – 2019. – Vol. 92. –P 36. SHAFIEI M., JAFARI S., PARASTESH F., OZER M. et al. Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer cou-pling // Communications in Nonlinear Science and Numeri-cal Simulation. – 2020. – Vol. 84. – 105175. SHERSTINSKY A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) net-work // Physica D: Nonlinear Phenomena. – 2020. – Vol. 404. – 132306. SHORTEN C., KHOSHGOFTAAR T.M., FURHT B. Deep Learning applications for COVID-19 // J Big Data. – 2021. – Vol. 8. – 18. SONG X., WANG H., CHEN Y. Autapse-induced firing patterns transitions in the Morris–Lecar neuron model // Nonlinear Dynamics. – 2019. – Vol. 96. – P. 2341–2350. SPORNS O., TONONI G., KÖTTER R. The human con-nectome: A structural description of the human brain // PLoS Computational Biology. – 2005. – Vol. 1, No. 4. – e42. STERRATT D., GRAHAM B., GILLIES A., WILL-SHAW D. Principles of computational modelling in neuro-science. – Cambridge University Press, 2011. – 390 p. SULTANA F., SUFIAN A., DUTTA P. Evolution of Im-age Segmentation using Deep Convolutional Neural Net-work: A Survey. Knowledge-Based Systems. – 2020. – Vol. 201–202. – 106062. USHA K., SUBHA P.A., Hindmarsh-Rose neuron model with memristors // Biosystems. – 2019. – Vol. 178. – P. 1–9. VAVOULIS D., STRAUB V., KEMENES I., KE-MENES G. et al. Dynamic control of a central pattern gen-erator circuit: a computational model of the snail feeding network // European Journal of Neuroscience. – 2007. – Vol. 25. – P. 2805–2818. VIVEKANANDHAN G., HAMARASH I.I., ALI ALI A.M., HE S. et al. Firing patterns of Izhikevich neu-ron model under electric field and its synchronization pat-terns // The European Physical Journal Special Topics. – 2022. – Vol. 231, No. 22. – P. 4017–4023. WIENCKE K., HORSTMANN A., MATHAR D., VILL-RINGER A. et al. Dopamine release, diffusion and uptake: A computational model for synaptic and volume transmis-sion // PLoS Comput Biol. – 2020. – Vol. 16, No. 11. – e1008410. XU L., QI G., MA J. Modeling of memristor-based Hindmarsh-Rose neuron and its dynamical analyses using energy method // Applied Mathematical Modelling. – 2022. – Vol. 101. – P. 503–516. XU Q., JU Z., DING S., FENG C. et al. Electromagnetic induction effects on electrical activity within a memristive Wilson neuron model // Cogn Neurodyn. – 2022. – Vol. 16. – P. 1221–1231. XU Q., LI Y., SHEN J., LIU J.K. et al . Constructing deep spiking neural networks from artificial neural networks with knowledge distillation // Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition. – 2023. – P. 7886–7895. YADAV P., MISHRA A., KIM S. Neuromorphic Hard-ware Accelerators // In: Artificial Intelligence and Hardware Accelerators. – Cham: Springer International Publishing, 2023. – P. 225–268. YAMAZAKI K., VO-HO V.K., BULSARA D., LE N. Spiking neural networks and their applications: A Review // Brain Sciences. – 2022. – Vol. 12, No. 7. – P. 863. YAN B., PANAHI S., HE S., JAFARI S. Further dynam-ical analysis of modified Fitzhugh–Nagumo model under the electric field // Nonlinear Dynamics. – 2020. – Vol. 101. – P. 521–529. YANG J.Q., WANG R., WANG Z.P., MA Q.Y. et al. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks // Nano Energy. – 2020. – Vol. 74. – 104828. YAO P., WU H., GAO B., TANG J. et al. Fully hard-ware-implemented memristor convolutional neural network // Nature. – 2020. – Vol. 577. – P. 641–646. YAO X., LI F., MO Z., CHENG J. Glif: A unified gated leaky integrate-and-fire neuron for spiking neural networks // Advances in Neural Information Processing Systems. – 2022. – Vol. 35. – P. 32160–32171. YASIN M.W., IQBAL M.S., AHMED N., AKGÜL A. et al. Numerical scheme and stability analysis of stochastic Fitzhugh–Nagumo model // Results in Physics. – 2022. – Vol. 32. – 105023. YIN X., HUANG X., PAN Y., LIU Q. Point and interval estimation of rock mass boreability for tunnel boring ma-chine using an improved attribute-weighted deep belief net-work // Acta Geotech. – 2023. – Vol. 18. – P. 1769–1791.
Supplementary files


