THE handling-comfort trade-off in a quarter-car system: Automatic adaptive management via Active Disturbance Rejection Control

Cover Page

Cite item

Full Text

Abstract

The effectiveness of a vehicle suspension is often assessed by maximum passenger comfort given continuous contact with the road (road holding). This paper investigates managing the comfort-handling trade-off in a quarter-car suspension system via active disturbance rejection control (ADRC). An adaptive control law is built to manage this trade-off automatically depending on the ADRC parameters. The idea is to use the ADRC-estimated disturbance signal to adjust the system’s domain of interest. The effectiveness of the proposed approach is validated: the adaptive control law is tested for a nonlinear hydraulic suspension system. Moreover, the effects of road disturbances amplitudes and road quality on the system performance are studied. Simulation results show the smoothness and simplicity of the adaptive algorithm for managing the comfort-handling trade-off.

About the authors

M. Alhelou

Bauman Moscow State Technical University

Author for correspondence.
Email: alkhelum@student.bmstu.ru
Moscow, Russia

Y. Wassouf

Bauman Moscow State Technical University

Email: thelegend990@gmail.com
Moscow, Russia

V. V Serebrenny

Bauman Moscow State Technical University

Email: vsereb@bmstu.ru
Moscow, Russia

A. I Gavrilov

Bauman Moscow State Technical University

Email: alexgavrilov@mail.ru
Moscow, Russia

E. S Lobusov

Bauman Moscow State Technical University

Email: evgeny.lobusov@yandex.ru
Moscow, Russia

References

  1. Goodarzi, A., and Khajepour, A. Vehicle Suspension System technology and design. - Kentfield, CA: 2017. - 77 p.
  2. Pinkaew, T., and Fujino, Y. Effectiveness of Semi-active Tuned Mass Dampers under Harmonic Excitation // Engineering Structures. - 2001. - Vol. 23, no.7. - P. 850-856.
  3. Chaves, M., Maia, J., and Esteves, J. Analysis of an Electromagnetic Automobile Suspension System. - 2008.International Conference on Electrical Machines. - Vilamoura, Portugal, 2008.
  4. Mihai, I., and Andronic, F. Behavior of a Semi-active Suspension System versus a Passive Suspension System on an Uneven Road Surface // Mechanics. - 2014. - Vol. 20, no.1. - P. 64-69.
  5. Zhileykin, M.M., Kotiev, G.O., and Nagatsev, M.V. Synthesis of the Adaptive Continuous System for the Multi-axle Wheeled Vehicle Body Oscillation Damping // IOP Conference Series: Materials Science and Engineering. - 2018. - Vol. 315, no. 1.
  6. Ovsyannikov, S., Kalinin, E., and Koliesnik, I. Oscillation Process of Multi-support Machines When Driving over Irregularities // Energy Management of Municipal Transportation Facilities and Transport. - Springer, Cham, 2018.
  7. Yao, G.Z., Yap, F.F. Chen, G., et al. MR Damper and Its Application for Semi-active Control of Vehicle Suspension System // Mechatronics. - 2002. - Vol. 12, no.7. - P. 963-973.
  8. Lajqi, S., and Pehan, S. Designs and Optimizations of Active and Semi-active Non-linear Suspension Systems for a Terrain Vehicle // Strojniški vestnik-Journal of Mechanical Engineering. - 2012. - Vol. 58, no.12. - P. 732-743.
  9. Zhou, Q. Research and Simulation on New Active Suspension Control System. - A thesis presented to the Graduate and Research Committee of Lehigh University in Candidacy for the Degree of Master of Science. - Lehigh University, 2013.
  10. Maizza, G., and Franz, D. Simulink Control Model Of An Active Pneumatic Suspension System In Passenger Cars. - Politecnico di Torino, 2019. - 65 p.
  11. Ryu, S., Park, Y., and Suh, M. Ride Quality Analysis of a Tracked Vehicle Suspension with a Preview Control // Journal of Terramechanics. - 2011. - Vol. 48, no.6. - P. 409-417.
  12. Tan, B, Wu, Y., Zhang, N., et al. Improvement of Ride Quality for Patient Lying in Ambulance with a New Hydro-Pneumatic Suspension // Advances in Mechanical Engineering. - 2019. - Vol. 11, no. 4. - P. 1-20.
  13. Abe, M. Vehicle Handling Dynamics: Theory and Application. - Oxford: Butterworth-Heinemann, 2015.
  14. Savsani, Vimal, Patel, V.K., Gadhvi, B, and Tawhid, M. Pareto Optimization of a Half Car Passive Suspension Model Using a Novel Multiobjective Heat Transfer Search Algorithm // Modelling and Simulation in Engineering. - 2017. - Vol. 2017. - Art. ID 2034907.
  15. Els, P.S., Theron, N., Uys, P.E., Thoresson, M. The Ride Comfort vs. Handling Compromise for Off-road Vehicles // Journal of Terramechanics. - 2007. - Vol. 44, no. 4. - P. 303-317.
  16. Singh, N., Chhabra, H., and Bhangal, K. Robust Control of Vehicle Active Suspension System // International Journal of Control and Automation. - 2016. - Vol. 9, no. 4. - P. 149-160.
  17. Hasbullah, F., Faris, W., Darsivan, J., Abdelrahman, M. Ride Comfort Performance of a Vehicle Using Active Suspension System with Active Disturbance Rejection Control // International Journal of Vehicle Noise and Vibration. - 2015. - Vol. 11, no. 1. - P. 78-101.
  18. de Jesús Lozoya-Santos, J., Tudón-Martínez, J., Morales-Menéndez, R., and Ramírez-Mendoza, R.Comparison of on-off Control Strategies for a Semi-active Automotive Suspension Using HiL // IEEE Latin America Transactions. - 2012. - Vol. 10, no. 5. - P. 2045-2052.
  19. Han, J. From PID to Active Disturbance Rejection Control // IEEE Transactions on Industrial Electronics. - 2009. - Vol. 56, no. 3. - P. 900-906.
  20. Pedro, J.O., Dangor, O., Dahunsi, O.A, Ali, M. CRS and PS-Optimised PID Controller for Nonlinear, lectrohydraulic Suspension Systems. - 2013 9th Asian Control Conference (ASCC). - Istanbul, 2013.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).