On inversion of Laplace transform of function, involving hyperbolic tangent

Cover Page

Cite item

Full Text

Abstract

The paper examines the inverse of the Laplace transform with a hyperbolic tangen function. This function arises when solving a boundary value problem in a bounded domain governed by the heat equation, subject to boundary conditions of the second and third kind.

Aim. To determine the inverse Laplace transform of a function that emerges from solving a boundary value problem, specifically a second or third type condition, associated with the heat equation.

Results. Using the residue theorem and the theory of a complex variable functions, wederive the inverse transform, suitable for large and small time values. In the first case, the inverse transform is expressed as a series of exponential functions with constant coefficients; in the second case, as a series of Laplace convolutions of special functions.

Conclusion and deduction. The derived results constitute a basis for constructing a solution to the boundary value problem for the heat equation in a bounded domain with a second-order condition on one of the boundaries and a third-order condition on the other, in a form suitable for small time values. In the context of mathematical physics, a solution to a similar problem is derived via separation of variables suitable for characterizing heat transfer processes for large time values. However, this proves inconvenient given sufficiently small temporal values, due to poor convergence properties pertaining to the Fourier series expansion involving eigenfunctions of the problem.

About the authors

Fatima G. Khushtova

Institute of Applied Mathematics and Automation - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: khushtova@yandex.ru
ORCID iD: 0000-0003-4088-3621
SPIN-code: 6803-4959

Candidate of Physics and Mathematics, Researcher, Department of Fractional calculus

Russian Federation, 89 A, Shortanov street, Nalchik, 360000, Russia

References

  1. Remizova O.I., Sosnin M.L. Operational method for constructing Green’s functions for small times corresponding to the solution to the boundary value problems for transfer equations of parabolic type. Fine Chemical Technologies. 2011. Vol. 6. No. 3. Pp. 116–119. EDN: OHJVKN. (In Russian)
  2. Ditkin V.A., Prudnikov A.P. Integral'nye preobrazovaniya i operacionnoe ischislenie [Integral transforms and operational calculus]. Moscow: Fizmatlit, 1961. (In Russian)
  3. Sveshnikov A.G., Tihonov A.N. The theory of functions of a complex variable. Moscow: MIR PUBLISHERS, 1978. (In Russian)
  4. Doetsch G. Guide to the applications of the Laplace and Z-transforms. London: Van Nostrand Reinhold Company, 1971.
  5. Galitsyn A.S., Zhukovsky A.N. Integral'nye preobrazovaniya i special'nye funkcii v zadachah teploprovodnosti [Integral transforms and special functions in heat conduction problems]. Kiev: Naukova Dumka, 1976. (In Russian)
  6. Bateman G., Erdelyi A. Tablicy integral'nyh preobrazovaniy [Tables of integral transforms]. Moscow: Nauka, 1969. Vol. 1. 344 p. (In Russian)
  7. Bateman G., Erdelyi A. Vysshie transcendentnye funkcii [Higher transcendental functions]. Vol. 2. Moscow: Nauka, 1966. (In Russian)
  8. Lebedev N.N. Special functions and their applications. Prentice-Hall, Inc, 1965.
  9. Carslaw H.S., Jaeger J.C. Conduction of heat in solids. Oxford: Oxford University Press. 1959.
  10. Lykov A.V. Teoriya teploprovodnosti [Theory of Heat Conduction]. Moscow: Vysshaya shkola, 1967. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Khushtova F.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).