Duality equations on a 4-manifold of conformal torsion-free connection and some of their solutions for the zero signature


Cite item

Full Text

Abstract

On a 4-manifold of conformal torsion-free connection with zero signature (--++) we found conditions under which the conformal curvature matrix is dual (self-dual or anti-self-dual). These conditions are 5 partial differential equations of the 2nd order on 10 coefficients of the angular metric and 4 partial differential equations of the 1st order, containing also 3 coefficients of external 2-form of charge. (External 2-form of charge is one of the components of the conformal curvature matrix.) Duality equations for a metric of a diagonal type are composed. They form a system of five second-order differential equations on three unknown functions of all four variables. We found several series of solutions for this system. In particular, we obtained all solutions for a logarithmically polynomial diagonal metric, that is, for a metric whose coefficients are exponents of polynomials of four variables.

About the authors

Leonid Nikolaevich Krivonosov

Nizhny Novgorod State Technical University

Author for correspondence.
Email: l.n.krivonosov@gmail.com

Candidate of physico-mathematical sciences, Associate professor

24, Minina st., Nizhnii Novgorod, 603600, Russian Federation

Vyacheslav Anatolievich Lukyanov

Nizhny Novgorod State Technical University

Email: oxyzt@ya.ru

Candidate of physico-mathematical sciences, Senior Researcher

24, Minina st., Nizhnii Novgorod, 603600, Russian Federation

References

  1. Лукьянов В. А., Кривоносов Л. Н., "Уравнения Янга-Миллса на 4-многообразиях конформной связности без кручения с различными сигнатурами", Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 21:4 (2017), 633-650
  2. Акивис М. А., Коннов В. В., "Некоторые локальные аспекты теории конформных структур", УМН, 48:1(289) (1993), 3-40 @@Akivis M. A., Konnov V. V., "Some local aspects of the theory of conformal structure", Russian Math. Surveys, 48:1 (1993), 1-35
  3. Акивис М. А., "О вполне изотропных подмногообразиях четырехмерной псевдоконформной структуры", Изв. вузов. Матем., 1983, № 1, 3-11 @@Akivis M. A., "On completely isotropic submanifolds of a four-dimensional pseudoconformal structure", Soviet Math. (Iz. VUZ), 27:1 (1983), 1-11
  4. Коннов В. В., "Асимптотическая псевдоконформная структура на четырехмерной гиперповерхности и ее вполне изотропные двумерные подмногообразия", Изв. вузов. Матем., 1992, № 6, 71-79
  5. Картан Э., "Пространства конформной связности", Пространства аффинной, проективной и конформной связности, Казанск. ун-т, Казань, 1962, 153-206
  6. Kobayashi Sh., "Automorphisms of G-Structures", Transformation Groups in Differential Geometry, Classics in Mathematics, 70, Springer, Berlin, Heidelberg, 1995, 1-38
  7. Atiyah M. F., Hitchin N. J., Singer I. M., "Self-duality in four-dimensional Riemannian geometry", Proc. Roy. Soc. London. Series A, 362:1711 (1978), 425-461
  8. Кривоносов Л. Н., Лукьянов В. А., "Основная теорема для (анти)автодуальной конформной связности без кручения", Изв. вузов. Матем., 2019, № 2, 29-38
  9. Кривоносов Л. Н., Лукьянов В. А., "Структура основного тензора пространства конформной связности без кручения. Конформные связности на гиперповерхности проективного пространства", Сиб. журн. чист. и прикл. матем., 17:2 (2017), 21-38
  10. Dunajski M., Ferapontov E. V., Kruglikov B., "On the Einstein-Weyl and conformal self-duality equations", J. Math. Phys., 56 (2015), 083501
  11. Фиников С. П., Метод внешних форм Картана в дифференциальной геометрии, ОГИЗ ГИТТЛ, М.-Л., 1948, 432 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».