Problems with conjunction on a characteristic plane for the third-order hyperbolic equation in the three-dimensional space


Cite item

Full Text

Abstract

In the present article the full equation of hyperbolic type of the third order with set of variable factors, in the area representing an infinite triangular prism, limited to the characteristic planes $z = 0$, $x = h$ of the given equation and two noncharacteristic planes $y = x$, $y = -x$ is considered. Two boundary-value problems with data on the edges of the prism, which are both characteristic and non-characteristic planes of the given equation, are solved. In connection with difficulties of a gluing together of considered type solutions of the hyperbolic equations and the representation of conditions of interface on performance integrals and fractional derivatives have been introduced into interface conditions. On the interior characteristic plane the matching conditions, containing fractional order derivatives of required function, are established in order to avoid troubles with intersection of solutions. For equation considered in this article we have obtained the solution of the Darboux problem by method of Riemann, taken for the basis solutions of both problems, which are reduced to uniquely solvable equations of Volterra and Fredholm respectively, that has allowed to obtain the solutions of problems in the explicit analytic form.

About the authors

Irina N Rodionova

Samara State University

Email: paskal1940@mail.ru
(Cand. Phys. & Math. Sci.), Associate Professor, Dept. of Mathematics & Business Informatics 1, Academician Pavlov st., Samara, 443011, Russian Federation

Vyacheslav M Dolgopolov

Samara State University

Email: paskal1940@mail.ru
(Dr. Phys. & Math. Sci.), Professor, Dept. of Mathematics & Business Informatics 1, Academician Pavlov st., Samara, 443011, Russian Federation

References

  1. В. Ф. Волкодавов, Е. И. Томина, О единственности решения ряда краевых задач для уравнения Лаврентьева-Бицадзе: Деп. в ВИНИТИ. 9.03.1993. 547-B93, 1993.
  2. В. Ф. Волкодавов, С. Г. Маклаков, “Формула обращения для одного уравнения Вольтерра первого рода и ее применение” // Изв. вузов. Матем., 1996. No 9. С. 16-20.
  3. В. Ф. Волкодавов, В. Н. Захаров, “Экстремальные свойства решений одного уравнения гиперболического типа третьего порядка в трехмерном пространстве и их применение” // Изв. вузов. Матем., 1999. No 4. С. 28-31.
  4. В. Ф. Волкодавов, Е. Р. Мансурова, “Краевая задача для частного вида уравнения Эйлера-Дарбу с интегральными условиями и специальными условиями сопряжения на характеристике” // Изв. вузов. Матем., 2000. No 8. С. 16-19.
  5. В. Ф. Волкодавов, Ю. А. Илюшина, “Для уравнения смешанного типа единственность решения задачи T с сопряжением производной по нормали с дробной производной” // Изв. вузов. Матем., 2003. No 9. С. 6-9.
  6. Е. Р. Мансурова, “Аналог задачи Трикоми с нелокальным интегральным условием сопряжения” // Изв. вузов. Матем., 2009. No 4. С. 61-66.
  7. Е. Р. Мансурова, “Об однозначной разрешимости аналога задачи Трикоми с нелокальным интегральным условием сопряжения” // Матем. заметки, 2010. Т. 87, No 6. С. 867-876. doi: 10.4213/mzm6596.
  8. И. Н. Родионова, “Задача с интегральным условием для одного пространственного уравнения гиперболического типа, вырождающегося на координатных плоскостях” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2011. No 2(23). С. 189-193. doi: 10.14498/vsgtu834.
  9. М. В. Долгополов, И. Н. Родионова, “Задачи для уравнений гиперболического типа на плоскости и в трехмерном пространстве с условиями сопряжения на характеристике” // Изв. РАН. Сер. матем., 2011. Т. 75, No 4. С. 21-28. doi: 10.4213/im4117.
  10. В. М. Долгополов, И. Н. Родионова, “Две задачи для пространственного аналога гиперболического уравнения третьего порядка” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. No 4(29). С. 212-217. doi: 10.14498/vsgtu1114.
  11. С. Г. Михлин, Интегральные уравнения, М.-Л.: ОГИЗ, 1947.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».