Refined model of thermo-visco-elastic-plastic dynamic deformation of reinforced flexible shallow shells
- Authors: Yankovskii A.P.1
-
Affiliations:
- Khristianovich Institute of Theoretical and Applied Mechanics Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 28, No 3 (2024)
- Pages: 562-585
- Section: Mechanics of Solids
- URL: https://journal-vniispk.ru/1991-8615/article/view/311039
- DOI: https://doi.org/10.14498/vsgtu2079
- EDN: https://elibrary.ru/LBASMU
- ID: 311039
Cite item
Full Text
Abstract
The problem of thermo-visco-elastic-plastic deformation of reinforced shallow shells under dynamic loading is formulated. In this case, a refined theory of their bending is used, the simplest version of which is the Ambartsumyan theory. Geometric nonlinearity is taken into account in the Karman approximation. The inelastic behavior of the materials of the composition phases is described by the equations of the theory of plastic flow; their viscoelastic deformation is described by the relations of the Maxwell–Boltzmann model. Temperature in the transversal direction is approximated by high-order polynomials. Numerical integration of the coupled nonlinear thermomechanical problem is carried out using an explicit time-stepping scheme. The visco-elastic-plastic flexural behavior of a cylindrical fiberglass panel with an orthogonal 2D-reinforcement structure is studied. The structure is briefly loaded in the transverse direction with high-intensity pressure. A comparative analysis of calculations performed with and without taking into account the temperature response in a shallow shell is carried out. Additionally, cases of preheating the panel from one of the front surfaces are studied. It is shown that to calculate the thermo-visco-elastic-plastic behavior of fiberglass curved panels, a refined theory of bending should be used, rather than the traditionally used Ambartsumyan theory, which significantly distorts the shape of the calculated residual deflection and the field of residual deformations of the components of the composition. It is demonstrated that failure to take into account the temperature response in a shallow reinforced shell can lead not only to a quantitative, but also a qualitatively incorrect idea of the calculated form of its residual deflection. The presence of preheating of the fiberglass panel leads to a noticeable change in its residual deflection. In this case, an important role is played by the fact from which particular front surface additional heating or cooling of the thin-walled structure is carried out.
Full Text
##article.viewOnOriginalSite##About the authors
Andrei P. Yankovskii
Khristianovich Institute of Theoretical and Applied Mechanics Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: yankovsky_ap@itam.nsc.ru
ORCID iD: 0000-0002-2602-8357
SPIN-code: 9972-3050
Scopus Author ID: 7003288442
ResearcherId: J-9106-2018
https://www.mathnet.ru/person28373
Dr. Phys. & Math. Sci.; Leading Research Scientist; Lab. of Fast Processes Physics
Russian Federation, 630090, Novosibirsk, Institutskaya st., 4/1References
- Composites: State of Art, ed. L. W. Weeton, E. Scala. New York, Metallurgical Society of AIME, 1974, 365 pp.
- Handbook of Composites, ed. G. Lubin. New York, Van Nostrand Reinhold, 1982, 786 pp.
- Kompozitsionnye materialy: Spravochnik [Composite Materials: Handbook], ed. D. M. Karpinos. Kiev, Nauk. Dumka, 1985, 592 pp. (In Russian)
- Tarnopol’sky Yu. M., Zhigun I. G., Polyakov V. A. Prostranstvenno-armirovannye kompozitsionnye materialy: Spravochnik [Spatially Reinforced Composite Materials: Handbook]. Moscow, Mashinostroenie, 1987, 224 pp. (In Russian)
- Abrosimov N. A., Bazhenov V. G. Nelineinye zadachi dinamiki kompozitnykh konstruktsii [Nonlinear Problems of Dynamics Composites Designs]. Nizhniy Novgorod, Nizhniy Novgorod State Univ., 2002, 400 pp. (In Russian)
- Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent pressure pulses, Int. J. Non-Linear Mech., 2011, vol. 46, no. 5, pp. 807–817. DOI: https://doi.org/10.1016/j.ijnonlinmec.2011.03.011.
- Solomonov Yu. S., Georgievskii V. P., Nedbai A. Ya., Andryushin V. A. Prikladnye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied Problems of Mechanics of Composite Cylindrical Shells]. Moscow, Fizmatlit, 2014, 408 pp (In Russian). EDN: UGLCQJ.
- Dimitrienko Yu. I. Mekhanika kompozitnykh konstruktsii pri vysokikh temperaturakh [Mechanics of Composite Structures under High Temperatures]. Moscow, Fizmatlit, 2019, 448 pp. (In Russian)
- Yonezu A., Yoneda K., Hirakata H., et al. A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation – Application to SiC whisker-reinforced aluminum alloy, Mat. Sci. Eng. A, 2010, vol. 527, no. 29–30, pp. 7646–7657. DOI: https://doi.org/10.1016/j.msea.2010.08.014.
- He G., Liu Y., Hammi Y., Bammann D. J., Horstemeyer M. F. A combined viscoelasticityviscoplasticity-anisotropic damage model with evolving internal state variables applied to fiber reinforced polymer composites, Mech. Adv. Mater. Struct., 2020, vol. 28, no. 17, pp. 7646–7657. DOI: https://doi.org/10.1080/15376494.2019.1709673.
- Yu M.-h. Advances in strength theories for materials under complex stress state in the 20th century, Appl. Mech. Rev., 2002, vol. 55, no. 3, pp. 169–218. DOI: https://doi.org/10.1115/1.1472455.
- Qatu M. S., Sullivan R. W., Wang W. Recent research advances on the dynamic analysis of composite shells: 2000–2009, Comp. Struct., 2010, vol. 93, no. 1, pp. 14–31. DOI: https://doi.org/10.1016/j.compstruct.2010.05.014.
- Morinière F. D., Alderliesten R. C., Benedictus R. Modelling of impact damage and dynamics in fibre-metal laminates — A review, Int. J. Impact Eng., 2014, vol. 67, pp. 27–38. DOI: https://doi.org/10.1016/j.ijimpeng.2014.01.004.
- Vena P., Gastaldi D., Contro R. Determination of the effective elastic-plastic response of metal-ceramic composites, Int. J. Plasticity, 2008, vol. 24, no. 3, pp. 483–508. DOI: https://doi.org/10.1016/j.ijplas.2007.07.001.
- Brassart L., Stainier L., Doghri I., Delannay L. Homogenization of elasto-(visco) plastic composites based on an incremental variational principle, Int. J. Plasticity, 2012, vol. 36, pp. 86–112. DOI: https://doi.org/10.1016/j.ijplas.2012.03.010.
- Vasiliev V. V., Morozov E. Advanced Mechanics of Composite Materials and Structural Elements. Amsterdam, Elsever, 2013, xii+412 pp. EDN: UERHXD. DOI: https://doi.org/10.1016/C2011-0-07135-1.
- Gibson R. F. Principles of Composite Material Mechanics. Boca Raton, CRC Press, 2016, xxiii+700 pp. DOI: https://doi.org/10.1201/b19626.
- Akhundov V. M. Incremental carcass theory of fibrous media under large elastic and plastic deformations, Mech. Compos. Mater., 2015, vol. 51, no. 3, pp. 383–396. EDN: MCFUEJ. DOI: https://doi.org/10.1007/s11029-015-9509-4.
- Rajhi W., Saanouni K., Sidhom H. Anisotropic ductile damage fully coupled with anisotropic plastic flow: Modeling, experimental validation, and application to metal forming simulation, Int. J. Damage Mech., 2014, vol. 23, no. 8, pp. 1211–1256. DOI: https://doi.org/10.1177/1056789514524076.
- Lee E.-H., Stoughton T. B., Yoon J. W. A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule, Int. J. Plasticity, 2017, vol. 99, pp. 120–143. DOI: https://doi.org/10.1016/j.ijplas.2017.08.007.
- Nizolek T. J., Pollock T. M., McMeeking R. M. Kink band and shear band localization in anisotropic perfectly plastic solids, J. Mech. Phys. Solids, 2021, vol. 146, 104183. DOI: https://doi.org/10.1016/j.jmps.2020.104183.
- Yankovskii A. P. Modeling of non-isothermic viscoelastic-plastic behavior of flexible reinforced plates, Comput. Cont. Mech., 2020, vol. 13, no. 3, pp. 350–370 (In Russian). EDN: MZKPHT. DOI: https://doi.org/10.7242/1999-6691/2020.13.3.28.
- Yankovskii A. P. Modeling of non-isothermal elastic-plastic behavior of reinforced shallow shells in the framework of a refined bending theory, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 1, pp. 119–141 (In Russian). EDN: YRWNPW. DOI: https://doi.org/10.14498/vsgtu1958.
- Yankovskii A. P. Modeling of thermoelastic-visco-plastic deformation of flexible reinforced plates, Mech. Solids, 2022, vol. 57, no. 7, pp. 111–133. DOI: https://doi.org/10.3103/S0025654422070184.
- Reissner E. On transverse vibrations of thin shallow elastic shells, Quart. Appl. Math., 1955, vol. 13, no. 2, pp. 169–176. DOI: https://doi.org/10.1090/qam/69715.
- Malmeister A. K., Tamuzh V. P., Teters G. A. Soprotivlenie zhestkikh polimernykh materialov [Resistance of Rigid Polymeric Materials]. Riga, Zinatne, 1972, 500 pp. (In Russian)
- Bogdanovich A. E. Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek [Nonlinear Problems of the Dynamics of Cylindrical Composite Shells]. Riga, Zinatne, 1987, 295 pp. (In Russian)
- Ambartsumian S. A. Obshchaia teoriia anizotropnykh obolochek [The General Theory of Anisotropic Shells]. Moscow, Nauka, 1974, 446 pp. (In Russian)
- Reddy J. N. Mechanics of Laminated Composite Plates and Shells. Theory and Analysis. Boca Raton, CRC Press, 2004, xxiii+831 pp. DOI: https://doi.org/10.1201/b12409.
- Andreev A. Uprugost’ i termouprugost’ sloistykh kompozitnykh obolochek. Matematicheskaia model’ i nekotorye aspekty chislennogo analiza [Elasticity and Thermoelasticity of Layered Composite Shells. Mathematical Model and Some Aspects of Numerical Analysis]. Saarbrücken, Palmarium Academic Publ., 2013, 93 pp (In Russian). EDN: QZAPNP.
- Bolotin V. V., Novichkov Yu. N. Mekhanika mnogosloinykh konstruktsii [Mechanics of Multilayer Structures]. Moscow, Mashinostroenie, 1980, 375 pp. (In Russian)
- Kulikov G. M. Thermoelasticity of flexible multilayer anisotropic shells, Mech. Solids, 1994, vol. 29, no. 2, pp. 27–35. EDN: TVBRLF.
- Houlston R., DesRochers C. G. Nonlinear structural response of ship panels subjected to air blast loading, Comp. Struct., 1987, vol. 26, no. 1–2, pp. 1–15. DOI: https://doi.org/10.1016/0045-7949(87)90232-X.
- Khazhinskii G. M. Modeli deformirovaniia i razrusheniia metallov [The Models of Metal Deformation and Destruction]. Moscow, Nauchnyi Mir, 2011, 231 pp. (In Russian)
- Lukanin V. N., Shatrov M. G., Kamfer G. M., et al. Teplotekhnika [Heat Engineering], ed. V. N. Lukanin. Moscow, Vyssh. Shk., 2003, 671 pp. (In Russian). EDN: QMHYSH.
Supplementary files
