Преобразование Халуты, осуществляемое с использованием различных операторов дробной производной
- Авторы: Khalouta A.1
-
Учреждения:
- Université Ferhat Abbas de Sétif 1
- Выпуск: Том 28, № 3 (2024)
- Страницы: 407-425
- Раздел: Дифференциальные уравнения и математическая физика
- URL: https://journal-vniispk.ru/1991-8615/article/view/311006
- DOI: https://doi.org/10.14498/vsgtu2082
- EDN: https://elibrary.ru/QNZQSC
- ID: 311006
Цитировать
Полный текст
Аннотация
Недавно автором было введено и разработано новое интегральное преобразование, которое обобщает множество известных интегральных преобразований. Цель этой работы — расширение данного интегрального преобразования (преобразование Халуты) различными операторами дробной производной. Рассматриваются дробные производные в смысле Римана–Лиувилля, Лиувилля–Капуто, Капуто–Фабрицио, Атанганы–Балеану–Римана–Лиувилля и Атанганы–Балеану–Капуто. Доказаны теоремы, касающиеся свойств преобразования Халуты для решения дробных дифференциальных уравнений с использованием указанных операторов дробной производной. Приведено несколько примеров для проверки надежности и эффективности предложенной техники. Результаты показывают, что преобразование Халуты является эффективным инструментом при работе с дробными дифференциальными уравнениями.
Полный текст
Открыть статью на сайте журналаОб авторах
Ali Khalouta
Université Ferhat Abbas de Sétif 1
Автор, ответственный за переписку.
Email: ali.khalouta@univ-setif.dz
ORCID iD: 0000-0003-1370-3189
https://www.mathnet.ru/person207700
Lab. of Fundamental Mathematics and Numerical; Dept. of Mathematics; Faculty of Sciences
Алжир, 19000, SétifСписок литературы
- Chen Y., Moore K. L. Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear Dyn., 2002, vol. 29, pp. 191–200. DOI: https://doi.org/10.1023/A:1016591006562.
- Friedrich C. Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 1991, vol. 30, pp. 151–158. DOI: https://doi.org/10.1007/BF01134604.
- Khalouta A. The existence and uniqueness of solution for fractional Newel–Whitehead–Segel equation within Caputo–Fabrizio fractional operator, Appl. Appl. Math., 2021, vol. 16, no. 2, pp. 894–909. https://digitalcommons.pvamu.edu/aam/vol16/iss2/7/.
- Khalouta A. A novel representation of numerical solution for fractional Bratu-type equation, Adv. Stud.: Euro-Tbil. Math. J., 2022, vol. 15, no. 1, pp. 93–109. DOI: https://doi.org/10.32513/asetmj/19322008207.
- Magin R. L., Ingo C., Colon-Perez L., et al. Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy, Microporous Mesoporous Mater., 2013, vol. 178, pp. 39–43. DOI: https://doi.org/10.1016/j.micromeso.2013.02.054.
- Watugula G. K. Sumudu transform: A new integral transform to solve differential equations and control engineering problems, Int. J. Math. Educ. Sci. Technol., 1993, vol. 24, no. 1, pp. 35–43. DOI: https://doi.org/10.1080/0020739930240105.
- Khan Z. H., Khan W. A. N-transform – properties and applications, NUST J. Eng. Sci, 2008, vol. 1, no. 1, pp. 127–133.
- Elzaki T. M. The new integral transform “Elzaki transform”, Glob. J. Pure Appl. Math., 2011, vol. 7, no. 1, pp. 57–64. https://www.ripublication.com/gjpamv7/gjpamv7n1_7.pdf.
- Atangana A., Kiliçman A. A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities, Math. Probl. Eng., 2013, 531984. DOI: https://doi.org/10.1155/2013/531984.
- Srivastava H. M., Luo M., Raina R. K. A new integral transform and its applications, Acta Math. Sci., Ser. B, Engl. Ed., 2015, vol. 35, no. 6, pp. 1386–1400. DOI: https://doi.org/10.1016/S0252-9602(15)30061-8.
- Zafar Z. U. A. ZZ transform method, Int. J. Adv. Eng. Glob. Technol., 2016, vol. 4, no. 1, pp. 1605–1611.
- Ramadan M., Raslan K. R., El-Danaf T., Hadhoud A. On a new general integral transform: Some properties and remarks, J. Math. Comput. Sci., 2016, vol. 6, no. 1, pp. 103–109. https://scik.org/index.php/jmcs/article/view/2392.
- Barnes B. Polynomial integral transform for solving differential equations, Eur. J. Pure Appl. Math., 2016, vol. 9, no. 2, pp. 140–151. http://www.ejpam.com/index.php/ejpam/article/view/2531.
- Yang X. J. A new integral transform method for solving steady heat-transfer problem, Thermal Science, 2016, vol. 20 (Suppl. 3), pp. S639–S642. DOI: https://doi.org/10.2298/TSCI16S3639Y.
- Aboodh K. S., Abdullahi I., Nuruddeen R. I. On the Aboodh transform connections with some famous integral transforms, Int. J. Eng. Inf. Syst., 2017, vol. 1, no. 9, pp. 143–151. http://ijeais.org/wp-content/uploads/2017/11/IJEAIS171116.pdf.
- Rangaig N., Minor N., Penonal G., et al. On another type of transform called Rangaig transform, Int. J. Partial Differ. Equ. Appl., 2017, vol. 5, no. 1, pp. 42–48. DOI: https://doi.org/10.12691/ijpdea-5-1-6.
- Maitama S., Zhao W. New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, Int. J. Anal. Appl., 2019, vol. 17, no. 2, pp. 167–190, arXiv: 1904.11370 [math.GM]. DOI: https://doi.org/10.28924/2291-8639-17-2019-167.
- Khalouta A. A new exponential type kernel integral transform: Khalouta transform and its applications, Math. Montisnigri, 2023, vol. 57, pp. 5–23. DOI: https://doi.org/10.20948/mathmontis-2023-57-1.
- Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier, 2006, xv+523 pp. DOI: https://doi.org/10.1016/s0304-0208(06)x8001-5. EDN: YZECAT.
- Caputo M., Fabrizio M. A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, vol. 1, no. 2, pp. 73–85. https://www.naturalspublishing.com/files/published/0gb83k287mo759.pdf.
- Losada J., Nieto J. J. Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 2015, vol. 1, no. 2, pp. 87–92. https://www.naturalspublishing.com/files/published/2j1ns3h8o2s789.pdf.
- Atangana A., Baleanu D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 2016, vol. 20, no. 2, pp. 763–769, arXiv: 1602.03408 [math.GM]. DOI: https://doi.org/10.2298/TSCI160111018A.
- Rawashdeh M. S., Al-Jammal H. Theories and applications of the inverse fractional natural transform method, Adv. Differ. Equ., 2018, vol. 2018, 222. DOI: https://doi.org/10.1186/s13662-018-1673-0.
- Bodkhe D. S., Panchal S. K. On Sumudu transform of fractional derivatives and its applications to fractional differential equations, Asian J. Math. Comp. Res., 2016, vol. 11, no. 1, pp. 69–77. https://ikprress.org/index.php/AJOMCOR/article/view/380.
- Aruldoss R., Devi R. A. Aboodh transform for solving fractional differential equations, Glob. J. Pure Appl. Math., 2020, vol. 16, no. 2, pp. 145–153. https://www.ripublication.com/gjpam20/gjpamv16n2_01.pdf.
- Belgacem R., Baleanu D., Bokhari A. Shehu transform and applications to Caputo–Fractional differential equations, Int. J. Anal. Appl., 2019, vol. 17, no. 6, pp. 917–927. DOI: https://doi.org/10.28924/2291-8639-17-2019-917.
- Toprakseven Ş. The existence and uniqueness of initial-boundary value problems of the fractional Caputo–Fabrizio differential equations, Univers. J. Math. Appl., 2019, vol. 2, no. 2, pp. 100–106. DOI: https://doi.org/10.32323/ujma.549942.
- Akgul A., Özturk G. Application of the Sumudu transform to some equations with fractional derivatives, Sigma J. Eng. Nat. Sci., 2023, vol. 41, no. 6, pp. 1132–1143. DOI: https://doi.org/10.14744/sigma.2023.00137.
- Bokhari A., Baleanub D., Belgacem R. Application of Shehu transform to Atangana–Baleanu derivatives, J. Math. Comput. Sci., 2020, vol. 20, no. 2, pp. 101–107. DOI: https://doi.org/10.22436/jmcs.020.02.03.
- Jena R. M., Chakraverty S., Baleanu D., Alqurashi M. M. New aspects of ZZ transform to fractional operators with Mittag–Leffler kernel, Front. Phys., 2020, vol. 8, 352. DOI: https://doi.org/10.3389/fphy.2020.00352.
Дополнительные файлы
