The influence of technological parameters of the laser engineered net shaping process on the quality of the formed object from titanium alloy VT23

Abstract

Introduction. Laser engineered net shaping (LENS) or Direct metal deposition (DMD) is considered as a promising method for manufacturing products of complex configurations from titanium-based alloys, as it allows minimizing the use of machining and loss of material to waste. Currently, neither the LENS technological process of titanium alloy VT23 has not been developed, nor the structural features of the alloy after LENS have not been studied, which will make it possible to determine the scope of application of the material after LENS. The purpose of this study is to determine optimal modes of the LENS process for manufacturing of quality parts from titanium alloy VT23. Methodology. The alloy specimens obtained with laser power 700÷1300 W in increments of 100 W and scanning speed 600÷1,000 mm/min in increments of 200 mm/min and distance between adjacent laser tracks 0.5–0.9L (L — track width) in increments of 0.2L were analyzed in the study. The elemental composition of the powder material was studied by X-ray fluorescence analysis and reducing combustion in a gas analyzer, the structure of the objects obtained by LENS was analyzed by metallographic and X-ray phase analysis methods as well as microhardness was determined. Results and discussion. It is established that high-quality objects without cracks, with low porosity can be synthesized from VT23 alloy by LENS method using the following modes: laser power 700÷1100 W, scanning speed 800–1,000 mm/min, track spacing 0.5–0.7 of the individual track width L. It is shown that after all investigated LENS modes, the VT23 alloy had a dispersed (α+β) structure of the “basket weave” type. It is revealed that regardless of LENS mode the amount of β-phase in the alloy structure is about 30 %. It is shown that the microhardness of the deposited material does not depend on LENS modes and is 460 HV.

About the authors

K. O. Bazaleeva

Email: bazaleeva-ko@rudn.ru
ORCID iD: 0000-0002-6205-3154
Ph.D. (Physics and Mathematics), Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, bazaleeva-ko@rudn.ru

D. E. Safarova

Email: safarova_de@pfur.ru
ORCID iD: 0000-0002-2811-8292
Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, safarova_de@pfur.ru

Y. Yu. Ponkratova

Email: ponkratova_yuyu@rudn.ru
ORCID iD: 0009-0000-1094-3529
Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, ponkratova_yuyu@rudn.ru

M. E. Lugovoi

Email: www111www6376@gmail.com
ORCID iD: 0009-0007-7160-7802
Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, www111www6376@gmail.com

E. V. Tsvetkova

Email: tsvetkova-ev@rudn.ru
ORCID iD: 0009-0002-8462-1818
Ph.D. (Engineering), Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, tsvetkova-ev@rudn.ru

A. V. Alekseev

Email: alexeev-anvs@rudn.ru
ORCID iD: 0009-0008-7394-6370
Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, alexeev-anvs@rudn.ru

M. V. Zhelezni

Email: markiron@mail.ru
ORCID iD: 0000-0003-3821-6790
Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation, markiron@mail.ru

I. A. Logachev

Email: logachev.ia@misis.ru
ORCID iD: 0000-0002-8216-1451
Ph.D. (Engineering), The National University of Science and Technology MISIS, 4 Leninskiy Pr., Moscow, 119049, Russian Federation, logachev.ia@misis.ru

F. A. Baskov

Email: baskov.fa@misis.ru
ORCID iD: 0000-0001-6238-4378
Ph.D. (Engineering), The National University of Science and Technology MISIS, 4 Leninskiy Pr., Moscow, 119049, Russian Federation, baskov.fa@misis.ru

References

  1. Металловедение титана и его сплавов / С.П. Белов, М.Я. Брун, С.Г. Глазунов, Б.А. Колачев; под общ. ред. С.Г. Глазунова и Б.А. Колачева. – М.: Металлургия, 1992. – 352 с.
  2. A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V / Z. Liu, B. He, T. Lyu, Y. Zou // Jom. – 2021. – Vol. 73. – P. 1804–1818. – doi: 10.1007/s11837-021-04670-6.
  3. A fatigue life posterior analysis approach for laser-directed energy deposition Ti-6Al-4V alloy based on pore-induced failures by kernel ridge / L. Dang, X. He, D. Tang, B. Wu, Y. Li // Engineering Fracture Mechanics. – 2023. – Vol. 289. – P. 109433. – doi: 10.1016/j.engfracmech.2023.109433.
  4. Ронжин Д.А., Григорьянц А.Г., Холопов А.А. Влияние технологических параметров на структуру металла изделий, полученных методом прямого лазерного выращивания из титанового порошка ВТ6 // Известия высших учебных заведений. Машиностроение. – 2022. – № 9 (750). – С. 30–42.
  5. Ravi G.A., Qiu C., Attallah M.M. Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition // Materials Letters. – 2016. – Vol. 179. – P. 104–108. – doi: 10.1016/j.matlet.2016.05.038.
  6. Mahamood R.M., Akinlabi E.T. Laser power and powder flow rate influence on the metallurgy and microhardness of laser metal deposited titanium alloy // Materials Today: Proceedings. – 2017. – Vol. 4 (2). – P. 3678–3684.
  7. Разработка режима прямого лазерного выращивания титанового сплава ВТ23 / Д.Э. Сафарова, М.Е. Луговой, Ю.Ю. Понкратова, К.О. Базалеева // VIII Всероссийская конференция по наноматериалам «НАНО 2023»: сборник материалов. – М.: ИМЕТ РАН, 2023. – С. 242–243.
  8. Laser cladding as repair technology for Ti–6Al–4V alloy: Influence of building strategy on microstructure and hardness / H. Paydas, A. Mertens, R. Carrus, J. Lecomte-Beckers, J.T. Tchuindjang // Materials & Design. – 2015. – Vol. 85. – P. 497–510. – doi: 10.1016/j.matdes.2015.07.035.
  9. Influence of process parameters on the mechanical properties of laser deposited Ti-6Al-4V alloy. Taguchi and response surface model approach / O.S. Fatoba, E.T. Akinlabi, S.A. Akinlabi, M.F. Erinosho // Materials Today: Proceedings. – 2018. – Vol. 5 (9). – P. 19181–19190. – doi: 10.1016/j.matpr.2018.06.273.
  10. Direct laser cladding of layer-band-free ultrafine Ti6Al4V alloy / L. Song, H. Xiao, J. Ye, S. Li // Surface and Coatings Technology. – 2016. – Vol. 307. – P. 761–771. – doi: 10.1016/j.surfcoat.2016.10.007.
  11. Sinter formation during directed energy deposition of titanium alloy powders / L. Sinclair, S.J. Clark, Y. Chen, S. Marussi, S. Shah, O.V. Magdysyuk, P.D. Lee // International Journal of Machine Tools and Manufacture. – 2022. – Vol. 176. – P. 103887. – doi: 10.1016/j.ijmachtools.2022.103887.
  12. TC17 titanium alloy laser melting deposition repair process and properties / Q. Liu, Y. Wang, H. Zheng, K. Tang, H. Li, S. Gong // Optics & Laser Technology. – 2016. – Vol. 82. – P. 1–9. – doi: 10.1016/j.optlastec.2016.02.013.
  13. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing / T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang // Journal of Alloys and Compounds. – 2015. – Vol. 632. – P. 505–513. – doi: 10.1016/j.jallcom.2015.01.256.
  14. Григорьянц А.Г., Мисюров А.И., Третьяков Р.С. Анализ влияния параметров коаксиальной лазерной наплавки на формирование валиков // Технология машиностроения. – 2011. – № 11. – С. 19–21. – EDN: OQNYQB.
  15. ОСТ 1-90013–81. Отраслевой стандарт. Титановые сплавы. Марки: введ. 01.07.1981. – ВИАМ, 1981. – 7 с.
  16. Additive manufacturing technologies / I. Gibson, D. Rosen, B. Stucker, M. Khorasani. – 3rd ed. – Cham, Switzerland: Springer, 2021. – doi: 10.1007/978-3-030-56127-7.
  17. Lewandowski J.J., Seifi M. Metal additive manufacturing: a review of mechanical properties // Annual Review of Materials Research. – 2016. – Vol. 46. – P. 151–186. – doi: 10.1146/annurev-matsci-070115-032024.
  18. De Oliveira U., Ocelik V., De Hosson J.T.M. Analysis of coaxial laser cladding processing conditions // Surface and Coatings Technology. – 2005. – Vol. 197 (2–3). – P. 127–136. – doi: 10.1016/j.surfcoat.2004.06.029.
  19. Processing window development for laser cladding of zirconium on zirconium alloy / A. Harooni, A.M. Nasiri, A.P. Gerlich, A. Khajepour, A. Khalifa, J.M. King // Journal of Materials Processing Technology. – 2016. – Vol. 230. – P. 263–271. – doi: 10.1016/j.jmatprotec.2015.11.028.
  20. Влияние деформационной стабильности b-фазы в титановом сплаве ВТ23 на фазовый состав, структуру и механические свойства при растяжении и ударном изгибе / С.В. Гладковский, В.Е. Веселова, А.М. Пацелова, В.А. Хотинов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2019. – Т. 21, № 4. – С. 26–33.
  21. Швецов О.В., Кондратьев С.Ю. Влияние режимов закалки и старения на эксплуатационные свойства сплава ВТ23 // Научно-технические ведомости СПбПУ. Естественные и инженерные науки. – 2018. – Т. 24, № 2. – С. 119–133.
  22. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing / T. Wang, Y.Y. Zhu, S.Q. Zhang, H.B. Tang, H.M. Wang // Journal of Alloys and Compounds. – 2015. – Vol. 632. – P. 505–513. – doi: 10.1016/j.jallcom.2015.01.256.
  23. Microstructure evolution and layer bands of laser melting deposition Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy / Y. Zhu, X. Tian, J. Li, H. Wang // Journal of Alloys and Compounds. – 2014. – Vol. 616. – P. 468–474. – doi: 10.1016/j.jallcom.2014.07.161.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).