Optimization of selective laser melting modes of powder composition of the AlSiMg system

Abstract

Introduction. New aluminum-based powder systems are currently being developed for additive manufacturing. The scientists' work is aimed at comprehensive studies of powder production, optimization of conditions for alloy production and formation of three-dimensional specimens with minimal porosity and absence of cracking during selective laser melting. The purpose of this work is the synthesis of an almost spherical Al-Si-Mg composite powder (91 wt. % Al, 8 wt. % Si, 1 wt. % Mg) from aluminum powder PA-4 (GOST 6058-22), silicon powder (GOST 2169-69) and magnesium powder MPF-4 (GOST 6001-79), which were not originally intended for selective laser melting technology. The work also provides for the optimization of selective laser melting modes to obtain an alloy and form three-dimensional specimens with minimal porosity and no cracking. To create a powder composition, powders ranging in size from 20 to 64 μm were selected by sieve analysis and subjected to mechanical mixing in a ball mill in a protective argon medium for one hour. The research methods are methods of X-ray diffraction and X-ray phase analysis, transmission electron microscopy, mechanical tests of microhardness. Studies of the powder composition after mechanical mixing showed that the mixed powder of aluminum, silicon and magnesium is a conglomerate of particles of spherical, oval and irregular shape. Results and discussions. The optimal modes for obtaining a specimen with a minimum porosity of 0.03 % and a microhardness of 1,291 MPa are selective laser melting modes: P = 90 W, V = 225 mm/s, S = 0.08 mm, h = 0.025 mm. The conducted research shows the possibility of synthesizing products from metal powders that are not adapted to processing by selective laser melting and obtaining an alloy with new mechanical properties during laser action.

About the authors

N. A. Saprykina

Email: saprikina@tpu.ru
ORCID iD: 0000-0002-6391-6345
Ph.D. (Engineering), Associate Professor, National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, Tomsk, saprikina@tpu.ru

V. V. Chebodaeva

Email: vtina5@mail.ru
ORCID iD: 0000-0002-1980-3941
Ph.D. (Engineering), Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, vtina5@mail.ru

A. A. Saprykin

Email: sapraa@tpu.ru
ORCID iD: 0000-0002-6518-1792
Ph.D. (Engineering), National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, sapraa@tpu.ru

Y. P. Sharkeev

Email: sharkeev@ispms.tsc.ru
ORCID iD: 0000-0001-5037-245X
D.Sc. (Physics and Mathematics), Professor, Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, sharkeev@ispms.tsc.ru

E. A. Ibragimov

Email: egor83rus@tpu.ru
ORCID iD: 0000-0002-5499-3891
Ph.D. (Engineering), National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, egor83rus@tpu.ru

T. S. Guseva

Email: tsh2@tpu.ru
ORCID iD: 0000-0002-3285-1673
National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk, 634050, Russian Federation, tsh2@tpu.ru

References

  1. Bandyopadhyay A., Heer B. Additive manufacturing of multi-material structures // Materials Science and Engineering: R. – 2018. – Vol. 129. – P. 1–16. – doi: 10.1016/j.mser.2018.04.001.
  2. Additive manufacturing of metallic components – process, structure and properties / T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224. – doi: 10.1016/j.pmatsci.2017.10.001.
  3. Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139 / C.A. Brice, W.A. Tayon, J.A. Newman, M.V. Kral, C. Bishop, A. Sokolova // Materials Characterization. – 2018. – Vol. 143. – P. 50–58. – doi: 10.1016/j.matchar.2018.04.002.
  4. Foteinopoulos P., Papacharalampopoulos A., Stavropoulos P. On thermal modeling of additive manufacturing processes // CIRP Journal of Manufacturing Science and Technology. – 2018. – Vol. 20. – P. 66–83. – doi: 10.1016/j.cirpj.2017.09.007.
  5. Influence of thermal treatment duration on structure and phase composition of additive Co-Cr-Mo alloy samples / M.A. Khimich, E.A. Ibragimov, A.I. Tolmachev, N.A. Saprykina, A.A. Saprykin, Y.P. Sharkeev // Letters on Materials. – 2022. – Vol. 12 (1). – P. 43–48. – doi: 10.22226/2410-3535-2022-1-43-48.
  6. The mechanism of forming coagulated particles in selective laser melting of cobalt-chromium-molybdenum powder / А.А. Saprykin, Y.P. Sharkeev, N.А. Saprykina, E.A. Ibragimov // Key Engineering Materials. – 2020. – Vol. 839. – P. 79–85. – doi: 10.4028/ href='www.scientific.net/KEM.839.79' target='_blank'>www.scientific.net/KEM.839.79.
  7. Effects of process conditions on the mechanical behavior of aluminum wrought alloy EN AW-2219 (AlCu6Mn) additively manufactured by laser beam melting in powder bed / M.C.H. Karg, B. Ahuja, S. Wiesenmayer, S.V. Kuryntsev, M. Schmidt // Micromachines. – 2017. – Vol. 8 (1). – P. 11. – doi: 10.3390/mi8010023.
  8. Influence of scanning strategies on processing of aluminum alloy EN AW 2618 using selective laser melting / D. Koutny, D. Palousek, L. Pantelejev, C. Hoeller, R. Pichler, L. Tesicky, J. Kaiser // Materials. – 2018. – Vol. 11 (2). – P. 298. – doi: 10.3390/ma11020298.
  9. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminum alloy / W. Reschetnik, J.P. Brüggemann, M.E. Aydinöz, O. Grydin, K.P. Hoyer, G. Kullmer, H.A. Richard // Procedia Structural Integrity. – 2016. – Vol. 2. – P. 3040–3048. – doi: 10.1016/j.prostr.2016.06.380.
  10. D printing of high-strength aluminum alloys / J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T. Schaedler, T.M. Pollock // Nature. – 2017. – Vol. 549. – P. 365–369. – doi: 10.1038/nature23894.
  11. Microstructure and mechanical properties of 7075 alloy with additional Si fabricated by selective laser melting / Y. Otani, Y. Kusaki, K. Itagaki, S. Sasaki // Materials Transactions. – 2019. – Vol. 60 (10). – P. 2143–2150. – doi: 10.2320/matertrans.Y-M2019837.
  12. Effect of solidification processing parameters and silicon content on the dendritic spacing and hardness in hypoeutectic Al-Si alloys / R.C. Sales, P. Felipe, K.G. Paradela, W.J.L. Garcao, A.F. Ferreira // Materials Research. – 2018. – Vol. 21 (6). – P. 8. – doi: 10.1590/1980-5373-mr-2018-0333.
  13. Smith P., Cowie J., Weritz J. Registration system for aluminum alloys used in additive manufacturing // Light Metal Age. – 2019. – Vol. 77 (4). – P. 72–75.
  14. Metal powders in additive manufacturing: a review on reusability and recyclability of common titanium, nickel and aluminum alloys / P. Moghimian, T. Poirié, M. Habibnejad-Korayem, J.A. Zavala, J. Kroeger, F. Marion, F. Larouche // Additive Manufacturing. – 2021. – Vol. 43. – P. 102017. – doi: 10.1016/j.addma.2021.102017.
  15. D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting / N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague // Progress in Materials Science. – 2019. – Vol. 106. – P. 100578. – doi: 10.1016/j.pmatsci.2019.100578.
  16. Influence of gas flow speed on laser plume attenuation and powder bed particle pickup in laser powder bed fusion / H. Shen, P. Rometsch, X. Wu, A. Huang // Materials Science & Engineering. – 2020. – Vol. 72. – P. 1039–1051. – doi: 10.1007/s11837-020-04020-y.
  17. Laser-based additive manufacturing of metal parts: modeling, optimization, and control of mechanical properties / ed. by L. Bian, N. Shamsaei, J.M. Usher. – Boca Raton: CRC Press, 2017. – 328 p. – (Advanced and Additive Manufacturing Series). – ISBN 9781498739986.
  18. Selective laser melting of aluminum alloys / N.T. Aboulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, C. Tuck // MRS Bulletin. – 2017. – Vol. 42. – P. 311–319. – doi: 10.1557/mrs.2017.63.
  19. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder / L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck // Acta Materialia. – 2013. – Vol. 61. – P. 1809–1819. – doi: 10.1016/j.actamat.2012.11.052.
  20. Синтез трехкомпонентного сплава на основе алюминия методом селективного лазерного плавления / Н.А. Сапрыкина, В.В. Чебодаева, А.А. Сапрыкин, Ю.П. Шаркеев, Е.А. Ибрагимов, Т.С. Гусева // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 4. – С. 151–164. – doi: 10.17212/1994-6309-2022-24.4-151-164.
  21. Review of selective laser melting: materials and applications / C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing // Applied Physics Reviews. – 2015. – Vol. 2 (4). – P. 041101. – doi: 10.1063/1.4935926.
  22. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties / R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, P. Cao // Powder Technology. – 2017. – Vol. 319. – P. 117–128. – doi: 10.1016/j.powtec.2017.06.050.
  23. Investigation on selective laser melting AlSi10Mg cellular lattice strut: molten pool morphology, surface roughness and dimensional accuracy / X. Han, H. Zhu, X. Nie, G. Wang, X. Zeng // Materials (Basel). – 2018. – Vol. 11. – P. 392. – doi: 10.3390/ma11030392.
  24. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends / J. Zhang, B. Song, Q. Wei, D. Bourell, Y. Shi // Journal of Materials Science & Technology. – 2019. – Vol. 35. – P. 270–284. – doi: 10.1016/j.jmst.2018.09.004.
  25. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development / N. Read, W. Wang, K. Essa, M.M. Attallah // Materials & Design. – 2015. – Vol. 65. – P. 417–424. – doi: 10.1016/j.matdes.2014.09.044.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».