Synthesis of the heddle drive mechanism

Cover Page

Full Text

Abstract

Introduction. Domestic enterprises in various industries use a variety of process equipment, including weaving machines. Modern weaving machines have several unique features, including a close relationship between technical condition, productivity, and product quality. Weaving machines are widely used in the textile industry in Russia and other countries. To produce cotton, silk, wool, linen, and other types of fabrics, appropriate machines are designed, including shuttle, shuttleless, pneumatic, and hydraulic machines. One of the most crucial parts of the machine is the heddle lifting mechanism, which determines the weave pattern and the quality of the fabric produced. The purpose of the work is to reduce the dimensions of the loom by changing the design parameters of the heddle lifting mechanism. The research methods are based on the theory of machines and mechanisms. They enable the development of a method for synthesizing the heddle lifting mechanism and designing a device with reduced dimensions. The paper presents the synthesis and analysis of the Assur group algorithm, which can determine the kinematic characteristics of the mechanism. Results and discussion. Following the proposed methodology, the mechanism design was modified by removing the fixing device from the lever mechanism operating area. This allowed for a reduction in interaxial distances and a change in the kinematic scheme. As a result of the new position of the fixed axes, some levers, the connecting rod, and the angle of the double-arm lever were also altered. The synthesis of the mechanism is proposed to begin with the last Assur group, setting it a specific value for the G-point motion equal to 75 mm. (motion of the fourth heddle shaft). As a limitation, the equality of arcs (chords) E´E = F´F ` was accepted. By assigning these values to the input element for the second-class first-type Assur group and bearing in mind the accepted conditions, the motions for point D were obtained. Thus, the value of the swing angle b of the roller shaft equal to 22.46° was obtained, which is 27.44 mm along the chord. Applying the interpolation principle, we found the initial motion value of 28 mm. Since the loom is planned to produce interlacing fabric patterns using 10 heddles, the design provides for a variable parameter that allows changing the motion of the heddles depending on their location in the depth of the machine. This role was assigned to the lever B03D. A cam pair synthesis was performed after determining the maximum and minimum values of the center of the roller motion. In total, 5 types of laws of motion were considered: straight-line, harmonic, double harmonic, power-law, cycloidal ones. For the center of the roller, the cycloidal law of motion was selected since it better corresponds to the specified conditions. The synthesis's accuracy was confirmed by the constructed cam profile and conducted kinematic studies for the Assur groups.

About the authors

Y. I. Podgornyj

Email: pjui@mail.ru
ORCID iD: 0000-0002-1664-5351
D.Sc. (Engineering), Professor, 1. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation; 2. Novosibirsk Technological Institute (branch) A.N. Kosygin Russian State University (Technologies, Design, Art), 35 Krasny prospekt (5 Potaninskayast.), Novosibirsk, 630099, Russian Federation, pjui@mail.ru

V. Yu. Skeeba

Email: skeeba_vadim@mail.ru
ORCID iD: 0000-0002-8242-2295
Ph.D. (Engineering), Associate Professor, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, skeeba_vadim@mail.ru

T. G. Martynova

Email: martynova@corp.nstu.ru
ORCID iD: 0000-0002-5811-5519
Ph.D. (Engineering), Associate Professor, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, martynova@corp.nstu.ru

D. V. Lobanov

Email: lobanovdv@list.ru
ORCID iD: 0000-0002-4273-5107
D.Sc. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, lobanovdv@list.ru

N. V. Martyushev

Email: martjushev@tpu.ru
ORCID iD: 0000-0003-0620-9561
Ph.D. (Engineering), Associate Professor, I. N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, martjushev@tpu.ru

S. S. Papko

Email: papko.duty@yandex.ru
ORCID iD: 0009-0004-4512-5963
Ph.D. student, Research assistant, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, papko.duty@yandex.ru

E. E. Rozhnov

Email: EgoRozhnov@yandex.ru
ORCID iD: 0009-0003-6779-0553
Ph.D. student, Research assistant, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, EgoRozhnov@yandex.ru

I. S. Yulusov

Email: yulusov.2017@stud.nstu.ru
ORCID iD: 0009-0006-7566-6722
Ph.D. student, Research assistant, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, yulusov.2017@stud.nstu.ru

References

  1. Основы проектирования машин ткацкого производства / А.В. Дицкий, Р.М. Малафеев, В.И. Терентьев, А.А. Туваева. – М.: Машиностроение, 1983. – 320 с.
  2. Выбор конструктивных параметров несущих систем машин с учетом технологической нагрузки / Ю.И. Подгорный, В.Ю. Скиба, А.В. Кириллов, О.В. Максимчук, Д.В. Лобанов, В.Р. Глейм, А.К. Жигулев, О.В. Саха // Обработка металлов (технология, оборудование, инструменты). – 2015. – № 4 (69). – С. 51–60. – doi: 10.17212/1994-6309-2015-4-51-60.
  3. Определение жесткостных характеристик и энергии деформации несущих систем технологических машин / Ю.И. Подгорный, В.Ю. Скиба, А.В. Кириллов, О.В. Максимчук, Т.Г. Мартынова, Д.В. Лобанов, И.С. Филатов, П.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2016. – № 4 (73). – С. 24–33. – doi: 10.17212/1994-6309-2016-4-24-33.
  4. Проектирование кулачкового механизма с учетом технологической нагрузки и энергетических затрат / Ю.И. Подгорный, В.Ю. Скиба, А.В. Кириллов, О.В. Максимчук, П.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2017. – № 2 (75). – С. 17–27. – doi: 10.17212/1994-6309-2017-2-17-27.
  5. Особенности циклограммирования машины с учетом взаимодействия звеньев механизмов с упорами / Ю.И. Подгорный, О.В. Максимчук, А.В. Кириллов, В.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 1. – С. 44–54. – doi: 10.17212/1994-6309-2018-20.1-44-54.
  6. Лушников С.В., Белый М.А. Исследование возможности уравновешивания сил на главном валу ткацких станков СТБ с использованием кулачков-разгружателей // Известия высших учебных заведений. Технология текстильной промышленности. – 2009. – № 2С. – С. 85–88.
  7. Разработка методики оценки геометрической точности профилей кулачков батанного механизма станка СТБ / В.А. Гусев, В.В. Данилов, Д.М. Цветков, А.Б. Смирнов // Известия высших учебных заведений. Технология текстильной промышленности. – 2007. – № 6С. – С. 92–97.
  8. Терёхина А.О., Соловьёв А.Б. Модернизированный кулачковый привод батанного механизма ткацкого станка типа СТБ // Известия высших учебных заведений. Технология текстильной промышленности. – 2004. – № 2. – C. 80–83.
  9. Синтез закона движения механизма прибоя уточных нитей станка СТБ с приводом от кулачков / Ю.И. Подгорный, А.В. Кириллов, В.Ю. Иванцивский, Д.В. Лобанов, О.В. Максимчук // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 4. – С. 47–58. – doi: 10.17212/1994-6309-2019-21.4-47-58.
  10. Исследование и выбор параметров при проектировании технологических машин / Ю.И. Подгорный, В.Ю. Скиба, Т.Г. Мартынова, О.В. Максимчук. – Новосибирск: Изд-во НГТУ, 2020. – 260 с. – (Монографии НГТУ). – ISBN 978-5-7782-4177-0.
  11. Вульфсон И.И. Динамика цикловых машин. – СПб.: Политехника, 2013. – 425 с. – ISBN 978-5-7325-1024-9.
  12. Подгорный Ю.И., Мартынова Т.Г., Скиба В.Ю. Синтез технологических машин. Расчет и конструирование. – Новосибирск: Изд-во НГТУ, 2023. – 240 с. – (Монографии НГТУ). – ISBN 978-5-7782-4912-7. – doi: 10.17212/978-5-7782-4912-7.
  13. Патент № 2120508 Российская Федерация. Кулачковый зевообразовательный механизм бесчелночного ткацкого станка: заявл. 16.12.1997: опубл. 20.10.1998 / Ерохин Е.Г., Васильева Н.М., Сокерин Е.Ф., Карева Т.Ю. – 4 с.
  14. Патент № 2176692 Российская Федерация. Устройство ремизного движения ткацкого станка: заявл. 17.06.1997: опубл. 10.12.2001, Бюл. № 15 / Рыбаков Е.А., Воробьев М.И., Шумов Г.В. – 7 с.
  15. Мшвениерадзе А.П. Технология и оборудования ткацкого производства. – М.: Легкая и пищевая промышленность, 1984. – 376 с.
  16. Оников Э.А. Технология, оборудование и рентабельность ткацкого производства. – М.: Текстильная промышленность, 2003. – 320 с.
  17. Грановский Т.С., Мшвениерадзе А.П. Строение и анализ тканей. – М.: Легпромбытиздат, 1988. – 93 с.
  18. Толубеева Г.И. Основы проектирования однослойных ремизных тканей. – Иваново: ИГТА, 2005. – 200 с.
  19. Подгорный Ю.И. Методы исследования заправок, их синтез и разработка критериев оптимальности условий эксплуатации ткацких станков при формировании плотных тканей: дис. … д-ра техн. наук: 05.19.03; 05.02.13: защищена 20.05.1990: утв. 07.12.1990. – Кострома, 1990. – 541 с.
  20. Flores P., Souto A.P., Marques F. The first fifty years of the mechanism and machine theory: standing back and looking forward // Mechanism and Machine Theory. – 2018. – Vol. 125. – P. 8–20. – doi: 10.1016/j.mechmachtheory.2017.11.017.
  21. Topology and dimension synchronous optimization design of 5-DoF parallel robots for in-situ machining of large-scale steel components / K. Chen, M. Wang, X. Huo, P. Wang, T. Sun // Mechanism and Machine Theory. – 2023. – Vol. 179. – P. 105105. – doi: 10.1016/j.mechmachtheory.2022.105105.
  22. Eckhardt H.D. Kinematic design of machines and mechanisms. – 1st еd. – New York: McGraw-Hill, 1998. – 620 p. – ISBN 0070189536. – ISBN 978-0070189539.
  23. Erdman A.G., Sandor G.N. Mechanism design: analysis and synthesis. – 4th ed. – Upper Saddle River, NJ: Pearson, 2001. – 688 p. – ISBN 0130408727. – ISBN 978-0130408723.
  24. Hsieh J.-F. Design and analysis of indexing cam mechanism with parallel axes // Mechanism and Machine Theory. – 2014. – Vol. 81. – P. 155–165. – doi: 10.1016/j.mechmachtheory.2014.07.004.
  25. Design of compliant mechanisms using continuum topology optimization: a review / B. Zhu, X. Zhang, H. Zhang, J. Liang, H. Zang, H. Li, R. Wang // Mechanism and Machine Theory. – 2012. – Vol. 143. – P. 103622. – doi: 10.1016/j.mechmachtheory.2019.103622.
  26. Faxin L., Xianzhang F. The design of parallel combination for cam mechanism // Procedia Environmental Sciences. – 2011. – Vol. 10, pt. B. – P. 1343–1349. – doi: 10.1016/j.proenv.2011.09.215.
  27. Sateesh N., Rao C.S.P., Janardhan Reddy T.A. Optimisation of cam-follower motion using B-splines // International Journal of Computer Integrated Manufacturing. – 2009. – Vol. 22 (6). – P. 515–523. – doi: 10.1080/09511920802546814.
  28. Rothbart H.A. Cam design handbook. – New York: McGraw-Hill Professional, 2003. – 606 p. – ISBN 0071377573. – ISBN 978-0875841830.
  29. Myszka D.H. Machines & mechanisms: applied kinematic analysis. – 4th ed. – Upper Saddle River, NJ: Pearson, 2012. – 376 p. – ISBN 0132157802. – ISBN 978-0132157803.
  30. Dresig H., Vul'fson I.I. Dynamik der mechanismen. – Wien; New York: Springer, 1989. – 328 p. – ISBN 978-3-7091-9036-4. – doi: 10.1007/978-3-7091-9035-7.
  31. Фролов К.В. Теория механизмов и машин. – М.: Высшая школа, 1987. – 496 с.
  32. S&A – Expert system for planar mechanisms design / H. Varbanov, T. Yankova, K. Kulev, S. Lilov // Expert Systems with Applications. – 2006. – Vol. 31 (3). – P. 558–569. – doi: 10.1016/j.eswa.2005.09.081.
  33. Fomin A., Paramonov M. Synthesis of the four-bar double-constraint mechanisms by the application of the Grubler's method // Procedia Engineering. – 2016. – Vol. 150. – P. 871–877. – doi: 10.1016/j.proeng.2016.07.034.
  34. To the theory of mechanisms subfamilies / A. Fomin, L. Dvornikov, M. Paramonov, A. Jahr // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 124. – P. 012055. – doi: 10.1088/1757-899X/124/1/012055.
  35. Vulfson I. Dynamics of cyclic machines. – Cham: Springer International, 2015. – 390 p. – ISBN 978-3-319-12633-3. – doi: 10.1007/978-3-319-12634-0.
  36. Ondrášek J. The synthesis of a hook drive cam mechanism // Procedia Engineering. – 2014. – Vol. 92. – P. 320–329. – doi: 10.1016/j.proeng.2014.12.129.
  37. Mott R.L. Machine elements in mechanical design. – 5th ed. – Upper Saddle River, NJ: Pearson, 2013. – 816 p. – ISBN 0135077931. – ISBN 978-0135077931.
  38. Design and analysis of high-speed cam mechanism using Fourier series / C. Zhoua, B. Hua, S. Chenb, L. Mac // Mechanism and Machine Theory. – 2016. – Vol. 104. – P. 118–129. – doi: 10.1016/j.mechmachtheory.2016.05.009.
  39. Артоболевский И.И. Теория механизмов и машин: учебник для втузов. – 4-е изд., перераб. и доп. – М.: Наука, 1988. – 640 с. – ISBN 5-02-013810-X.
  40. Левитский Н.И. Теория механизмов и машин: учебное пособие для вузов. – 2-е изд., перераб. и доп. – М.: Наука, 1990. – 592 с. – ISBN 5-02-014188-7.
  41. Талавашек О., Сватый В. Бесчелночные ткацкие станки. – М.: Легпромбытиздат, 1985. – 355 с.
  42. Башметов В.С., Башметов А.В. Прокладывание уточных нитей на ткацких станках. – Витебск: ВГТУ, 2012. – 98 с.
  43. Тир К.В. Комплексный расчет кулачковых механизмов. – М.: Машгив, 1958. – 380 с.
  44. Кузовкин К.С. Опыт работы на станках СТБ. – М.: Машиностроение, 1968. – 238 с.
  45. Kinematic analysis of crank-cam mechanism of process equipment / Yu.I. Podgornyj, V.Yu. Skeeba, T.G. Martynova, N.S. Pechorkina, P.Yu. Skeeba // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 327. – P. 042080. – doi: 10.1088/1757-899X/327/4/042080.
  46. Kinematic accuracy analysis for cam mechanism considering dynamic behavior and form deviations / J. Yang, C. Wu, N. Shao, F. Liu, Y. Cao, Y. Cao, N. Anwer // Precision Engineering. – 2024. – Vol. 88. – P. 109–116. – doi: 10.1016/j.precisioneng.2024.01.023.
  47. Motion laws synthesis for cam mechanisms with multiple follower displacement / Yu.I. Podgornyj, V.Yu. Skeeba, A.V. Kirillov, T.G. Martynova, P.Yu. Skeeba // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 327. – P. 042079. – doi: 10.1088/1757-899X/327/4/042079.
  48. Неклютин Д.А. Оптимальное проектирование кулачковых механизмов на ЭВМ. – М.: Алмата, 1977. – 215 с.
  49. Тартаковский И.И. Некоторые задачи синтеза оптимальных законов движения // Машиностроение. – 1971. – № 2. – С. 39–43.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».