Analysis of the reasons for the formation of defects in the 12-Cr18-Ni10-Ti steel billets and development of recommendations for its elimination

Cover Page

Cite item

Abstract

Introdution. Austenitic steel (e.g., AISI 304, AISI 321, AISI 316, AISI 403, 12-Cr18-Ni10-Ti, etc.) is widespread, which is caused by high corrosion resistance and the corresponding possibility of use in aggressive media. The following most common types of 12-Cr18-Ni10-Ti steel defects can be distinguished: integranular corrosion, martensitic orientation of the α-phase and ferrite δ-phase. The purpose of work: to analyze the defects formation reasons of the 12-Cr18-Ni10-Ti steel grade billets and to develop recommendations for their elimination. The methods of investigation. Tests of 12-Cr18-Ni10-Ti steel samples for resistance to integranular corrosion, metallographic analysis of defects were carried out in this work. Hardness measurements were carried out for various degrees of billets reduction. Thermodynamic calculations of phase equilibrium in multicomponent steel for different temperatures were performed by the Thermo-Calc software. Results and Discussion. It is determined that in order to prevent integranular corrosion, it is necessary to reduce the nitrogen and carbon content in steel at the stage of ladle refining to 0.05%, and also to ensure the concentration of titanium in steel is not less than the permissible value — 0.3%. These measures contribute to the reduction of Cr23C6 chromium carbides responsible for integranular corrosion. It is necessary to reduce the degree of compression of the billets to a level of no more than 50% to prevent the appearance of a ferromagnetic martensitic α-phase, since the formation of this defect is associated with a high degree of compression during drawing. The high-temperature phase of δ-ferrite exists in the metal structure in a wide temperature range. Reducing this range to 100 degrees or less by optimizing the composition of the carbon and chromium alloy in accordance with GOST 5632-2014 leads to a significant reduction of the amount of ferrite. However, it is not possible to completely eliminate it from the structure of steel. For all cases, it is necessary to assign austenization of billets in the temperature range of 1,050…1,100 °C.

About the authors

S. V. Ryaboshuk

Email: ryaboshuk.sv@gmail.com
Peter the Great St.Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation, ryaboshuk.sv@gmail.com

P. V. Kovalev

Email: kovalev_pv@spbstu.ru
Ph.D. (Engineering), Associate Professor, Peter the Great St.Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg, 195251, Russian Federation, kovalev_pv@spbstu.ru

References

  1. Урбан Д. Новые хромистые стали для использования в условиях высоких температур // Черные металлы. – 2018. – № 7. – С. 67–68.
  2. Features of high-amperage electrolyzer hearth breakdown / V.M. Sizyakov, V.Yu. Bazhin, R.K. Patrin, R.Yu. Feshchenko, A.V. Saitov // Refractories and Industrial Ceramics. – 2013. – Vol. 54. – P. 151–154.
  3. High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten solar salt / A. Gomes, M. Navas, N. Uranga, T. Paiva, I. Figueira, T.C. Diamantino // Solar Energy. – 2019. – Vol. 177. – P. 408–419.
  4. A computational approach to evaluate the sensitization propensities of UNS S32100 and UNS S34700 stainless steels / R. Ayer, Y. Ro, I. Park, J. Shim, J. Nam, J. Kim // Corrosion 2018. – Phoenix, Arizona, USA, 2018. – P. NACE-2018-10574. – URL: https://onepetro.org/NACECORR/proceedings-abstract/CORR18/All-CORR18/NACE-2018-10574/125882 (accessed 26.01.2023).
  5. Software for modeling brazing process of spacecraft elements from widely used alloys / V. Tynchenko, V. Bukhtoyarov, D. Rogova, A. Myrugin, Y. Seregin, A. Bocharov // 2022 21st International Symposium INFOTEH-Jahorina (INFOTEH), East Sarajevo, Bosnia and Herzegovina. – IEEE, 2022. – P. 1–5. – doi: 10.1109/INFOTEH53737.2022.9751246.
  6. An electrochemical study on the effect of stabilization and sensitization heat treatments on the intergranular corrosion behaviour of AISI 321H austenitic stainless steel / K. Morshed-Behbahani, P. Najafisayar, M. Pakshir, M. Shahsavari // Corrosion Science. – 2018. – Vol. 138. – P. 28–41.
  7. Feng Z., Zecevic M., Knezevic M. Stress-assisted (γ→ α′) and strain-induced (γ→ ε→ α′) phase transformation kinetics laws implemented in a crystal plasticity model for predicting strain path sensitive deformation of austenitic steels // International Journal of Plasticity. – 2021. – Vol. 136. – P. 102807.
  8. Effect of δ-ferrite on the stress corrosion cracking behavior of 321 stainless steel / J. Wang, H. Su, K. Chen, D. Du, L. Zhang, Z. Shen // Corrosion Science. – 2019. – Vol. 158. – P. 108079.
  9. Hu D., Li S.L., Lu S. Effects of TIG process on corrosion resistance of 321 stainless steel welding joint // Materials Science Forum. – 2013. – Vol. 749. – P. 173–179.
  10. Analysis of the causes of cracks in the production of ingots and forgings from austenitic stainless steel 08Х18Н10Т (AISI 321) / A.D. Davydov, O.O. Erokhina, S.V. Ryaboshuk, P.V. Kovalev // Key Engineering Materials. – 2020. – Vol. 854. – P. 16–22.
  11. Analytical review of the foreign publications about the methods of rise of operating parameters of cathode blocks during 1995–2014 / R.Yu. Feshchenko, O.O. Erokhina, A.L. Kvanin, D.S. Lutskiy, V.V. Vasilyev // CIS Iron and Steel Review. – 2017. – Vol. 13. – P. 48–52.
  12. Beneficial effect of reversed austenite on the intergranular corrosion resistance of martensitic stainless steel / C. Man, C. Dong, D. Kong, L. Wang, X. Li // Corrosion Science. – 2019. – Vol. 151. – P. 108–121.
  13. Choudhary S. Field experience with chloride stress corrosion cracking of stainless steels below 60° C in condensate stabilization unit // OnePetro. – 2022. – P. SPE-210992-MS. – doi: 10.2118/210992-MS.
  14. Corrosion characteristics of iron-nickel-chromium alloys in molten nitrate salts under isothermal and thermal cycling conditions / Q. Liu, C. Wang, A. Neville, R. Barker, J. Qian, F. Pessu // OnePetro. – 2022. – P. AMPP-2022-17529. – URL: https://onepetro.org/amppcorr/proceedings-pdf/AMPP22/5-AMPP22/D051S049R002/2724564/ampp-2022-17529.pdf (accessed: 26.01.2023).
  15. Ковалюк Е.Н., Горевая М.А., Тумурова В.П. Изучение питтинговой и межкристаллитной коррозии сталей 12Х15Г9НД и 12Х18Н10Т // Коррозия: материалы, защита. – 2014. – № 7. – С. 27–32.
  16. Чубуков А.И., Новиков А.В. Исследование стойкости сварных соединений сталей AISI 316TI и 10X17H13M2T и 12X18H10T к межкристаллитной коррозии // Наука в движении: от отражения к созданию реальности: материалы II Всероссийской научно-практической конференции с международным участием, Альметьевск, 15 июня 2017 г. – М., 2017. – С. 173–178.
  17. Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304L stainless steel / K.S. Mao, C. Sun, Y. Huang, C.-H. Shiau, F.A. Garner, P.D. Freyer, J.P. Wharry // Materialia. – 2019. – Vol. 5. – P. 100208. – doi: 10.1016/j.mtla.2019.100208.
  18. Saied M. Experimental and numerical modeling of the dissolution of δ-ferrite in the Fe-Cr-Ni system: Application to austenitic stainless steels: PhD thesis. – University Grenoble Alpes, 2016. – 220 p.
  19. Leone G.L., Kerr H.W. The ferrite to austenite transformation in stainless steels // Welding Research Supplement. – 1982. – Vol. 61 (1). – P. 13s–22s.
  20. Kalmykova T.D., Kuznetsov V.V. Kinetic and thermodynamic aspects of flotation beneficiation of polymetallic raw materials // E3S Web of Conferences. – 2021. – Vol. 266. – P. 02015. – doi: 10.1051/e3sconf/202126602015.
  21. Development of a methodology for studying the influence of technological factors of production on the quality of large ingots from stamped steel grades 5XHM and 56NiCrMoV7 / P.V. Kovalev, E.S. Kazantsev, S.V. Ryaboshuk, O.O. Erokhina, I.A. Matveev // Journal of Physics: Conference Series. – 2020. – Vol. 1582. – P. 012028. – doi: 10.1088/1742-6596/1582/1/012028.
  22. Analysis of the gasket damage and sealing performance for the thread ring block heat exchanger / F. Zhuang, W. Sui, G. Xie, S. Shao, Z. Han, W. Liu // Pressure Vessels and Piping Conference. – ASME, 2019. – Vol. 1. – P. V001T01A068. – doi: 10.1115/PVP2019-93055.
  23. Roles of different components of complex inclusion in pitting of 321 stainless steel: Induction effect of CaS and inhibition effect of TiN / X. Tan, Y. Jiang, Y. Chen, A. Tong, J. Li, Y. Sun // Corrosion Science. – 2022. – Vol. 209. – P. 110692. – doi: 10.1016/j.corsci.2022.110692.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».