Determination of the optimal metal processing mode when analyzing the dynamics of cutting control systems
- Authors: Lapshin V.P.1, Moiseev D.V.1
-
Affiliations:
- Issue: Vol 25, No 1 (2023)
- Pages: 16-43
- Section: TECHNOLOGY
- URL: https://journal-vniispk.ru/1994-6309/article/view/301414
- DOI: https://doi.org/10.17212/1994-6309-2023-25.1-16-43
- ID: 301414
Cite item
Abstract
About the authors
V. P. Lapshin
Email: Lapshin1917@yandex.ru
Ph.D. (Engineering), Ph.D. (Engineering), Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, Lapshin1917@yandex.ru
D. V. Moiseev
Email: denisey2003@mail.ru
Ph.D. (Engineering), Don State Technical University, 1 Gagarin square, Rostov-on-Don, 344000, Russian Federation, denisey2003@mail.ru
References
- Stépán G. Modelling nonlinear regenerative e?ects in metal cutting // Philosophical Transactions of The Royal Society A: Mathematical Physical and Engineering Sciences. – 2001. – Vol. 359. – P. 739–757. – doi: 10.1098/rsta.2000.0753.
- Litak G. Chaotic vibrations in a regenerative cutting process // Chaos, Solitons and Fractals. – 2002. – Vol. 13. – P. 1531–1535. – doi: 10.1016/S0960-0779(01)00176-X.
- Namachchivaya S., Beddini R. Spindle speed variation for the suppression of regenerative chatter // Journal of Nonlinear Science. – 2003. – Vol. 13. – P. 265–288. – doi: 10.1007/s00332-003-0518-4.
- Wahi P., Chatterjee A. Regenerative tool chatter near a codimension 2 Hopf point using multiple scales // Nonlinear Dynamics. – 2005. – Vol. 40, iss. 4. – P. 323–338.
- Stépán G., Insperger T., Szalai R. Delay, parametric excitation, and the nonlinear dynamics of cutting processes // International Journal of Bifurcation and Chaos. – 2005. – Vol. 15, N 09. – P. 2783–2798. – doi: 10.1142/S0218127405013642.
- Nonlinear behaviour of the regenerative chatter in turning process with a worn tool: forced oscillation and stability analysis / H. Moradi, F. Bakhtiari-Nejad, M.R. Movahhedy, M.T. Ahmadian // Mechanism and Machine Theory. – 2010. – Vol. 45, iss. 8. – P. 1050–1066. – doi: 10.1016/j.mechmachtheory.2010.03.014.
- Nonlinear dynamics of a machining system with two interdependent delays / A.M. Gouskov, S.A. Voronov, H. Paris, S.A. Batzer // Communications in Nonlinear Science and Numerical Simulation. – 2002. – Vol. 7, N 4. – P. 207–221. – doi: 10.1016/S1007-5704(02)00014-X.
- Lapshin V.P. Turning tool wear estimation based on the calculated parameter values of the thermodynamic subsystem of the cutting system // Materials. – 2021. – Vol. 14, N 21. – P. 6492. – doi: 10.3390/ma14216492.
- Лапшин В.П., Христофорова В.В., Носачев С.В. Взаимосвязь температуры и силы резания с износом и вибрациями инструмента при токарной обработке металлов // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 3. – С. 44–58. – doi: 10.17212/1994-6309-2020-22.3-44-58.
- Zakovorotny V.L., Gvindjiliya V.E. Evolution of the dynamic cutting system with irreversible energy transformation in the machining zone // Russian Engineering Research. – 2019. – Vol. 39, N 5. – P. 423–430. – doi: 10.3103/S1068798X19050204.
- Заковоротный В.Л., Гвинджилия В.Е. Связь притягивающих множеств деформаций инструмента с пространственной ориентацией упругости и регенерацией сил резания при точении // Известия вузов. Прикладная нелинейная динамика. – 2022. – T. 30, № 1. – С. 37–56. – doi: 10.18500/0869-6632-2022-30-1-37-56.
- Zakovorotny V.L., Gvindjiliya V.E. Self-organization and evolution in dynamic friction systems // Journal of Vibroengineering. – 2021. – Vol. 23, iss. 6. – P. 1418–1432. – doi: 10.21595/jve.2021.22033.
- Astakhov V.P. The assessment of cutting tool wear // International Journal of Machine Tools and Manufacture. – 2004. – Vol. 44. – P. 637–647. – doi: 10.1016/j.ijmachtools.2003.11.006.
- Рыжкин А.А. Синергетика изнашивания инструментальных режущих материалов (трибоэлектрический аспект). – Ростов н/Д.: Изд. центр ДГТУ, 2004. – 323 с. – ISBN 5-7890-0307-9.
- Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion / J.A. Pereda, L.A. Vielva, A. Vegas, A. Prieto // IEEE Transactions on Microwave Theory and Techniques. – 2001. – Vol. 49 (2). – P. 377–381.
- Kolev L., Petrakieva S. Interval Raus criterion for stability analysis of linear systems with dependent coefficients in the characteristic polynomial // 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress. – IEEE, 2004. – Vol. 1. – P. 130–135.
- Заковоротный В.Л., Гвинджилия В.Е. Связь самоорганизации динамической системы резания с изнашиванием инструмента // Известия вузов. Прикладная нелинейная динамика. – 2020. – Т. 28, вып. 1. – С. 46–61. – doi: 10.18500/0869-6632-2020-28-1-46-61.
- The approach to investigation of the the regions of self-oscillations / T.R. Velieva, D.S. Kulyabov, A.V. Korolkova, I.S. Zaryadov // Journal of Physics: Conference Series. – 2017. – Vol. 937. – P. 012057. – doi: 10.1088/1742-6596/937/1/012057.
- Sourdille P., O'Dwyer A., Coyle E. Smith predictor structure stability analysis using Mikhailov stability criterion // Proceedings of the 4th Wismarer Automatisierungs Symposium. – Wismar, Germany, 2005. – P. 22–23. – doi: 10.21427/kp1b-6034.
- Saleh A.I., Hasan M.M.M., Darwish N.M.M. The Mikhailov stability criterion revisited // JES. Journal of Engineering Sciences. – 2010. – Vol. 38, N 1. – P. 195–207.
- Barker L.K. Mikhailov stability criterion for time-delayed systems. Report NASA-TM-78803. – NASA Langley Research Center, 1979. – 17 p.
- Макаров А.Д. Оптимизация процессов резания. – М.: Машиностроение, 1976. – 278 с.
- Рыжкин А.А., Шучев К.Г., Климов М.М. Обработка материалов резанием. – Ростов н/Д.: Феникс, 2008. – 418 с. – ISBN 978-5-7890-0413-X.
- Зорев Н.Н. Вопросы механики процесса резания металлов. – М.: Машгиз, 1956. – 367 с.
Supplementary files
