Comparison of Ultrasonic Surface Treatment Methods Applied to Additively Manufactured Ti-6Al-4V Alloy

Abstract

Introduction. Selective Laser Melting (SLM) of metal powders enables the fabrication of parts with arbitrary geometries, which is unattainable through conventional manufacturing technologies. The main disadvantages of the method include high surface roughness, resulting from metal spattering, spheroidization, partial melting and powder adhesion, as well as difficulties with finishing complex surface areas. One effective approach for processing such parts is the application of ultrasonic liquid technologies, where cavitation bubbles act as working bodies, penetrating and performing work on any area of the surface. The purpose of this study is to determine the influence of different types of ultrasonic treatment on the surface properties obtained by selective laser melting through comparative testing. Materials and methods. Samples made from Ti-6Al-4V titanium alloy, manufactured using selective laser melting on an EOS M280 machine, were investigated. For ultrasonic treatment, a rod-shaped magnetostrictive vibratory system was used, with the end of the emitter positioned 20 mm from the side surface of the sample. A etching solution (3% HF + 5% HNO3 + H2O) was used as a liquid medium to remove the oxide film that hinders the effect of cavitation. Cavitation-erosion (CET) treatment, cavitation-abrasive (CAT) treatment, and additionally, ultrasonic surface plastic deformation (USPD) were performed. After treatment, the surface condition, roughness, and sub-microgeometry were assessed for all samples. The microstructure of the USPD-treated samples was also investigated. Results and discussion. A high-speed imaging method was used to compare the main mechanisms of interaction with the surface during CET and CAT. During CET, collapsing and pulsating cavitation clusters are observed, located at the points of highest peaks and valleys on the surface. During CAT, the micro-cutting action of abrasive particles is added. These particles receive shock waves generated by collapsing bubbles, hit the surface, and undergo oscillatory, rotational, and longitudinal movements. Comparison of the surface condition dynamics revealed that CET enables complete removal of surface defects down to the melt tracks. CAT removes some surface defects while deforming the remaining ones. During USPD, spherical defects are crushed, forming large flat areas. All types of ultrasonic treatment reduce surface roughness: Ra is reduced by 33% during CET, by 43% during CAT, and by 52% during USPD. However, Rmax is lowest with CAT. The microstructure after USPD is characterized by a hardened layer with a depth of approximately 100 µm and an increase in microhardness up to 35%. However, after USPD, defects in the form of cracks, partially deformed spheres, and the presence of untreated deep surface depressions are formed in the surface layer, which significantly reduces performance characteristics. Therefore, it is advisable to perform CET or CAT before USPD to remove surface defects.

About the authors

S. K. Sundukov

Email: sergey-lefmo@yandex.ru
Ph.D. (Engineering), Associate Professor, Moscow Automobile and Road Construction State Technical University (MADI), 64 Leningradsky prospect, Moscow, 125319, Russian Federation, sergey-lefmo@yandex.ru

R. I. Nigmetzyanov

Email: lefmo@yandex.ru
Ph.D. (Engineering), Associate Professor, Moscow Automobile and Road Construction State Technical University (MADI), 64 Leningradsky prospect, Moscow, 125319, Russian Federation, lefmo@yandex.ru

V. M. Prikhodko

Email: prikhodko@madi.ru
D.Sc. (Engineering), Professor, Moscow Automobile and Road Construction State Technical University (MADI), 64 Leningradsky prospect, Moscow, 125319, Russian Federation, prikhodko@madi.ru

D. S. Fatyukhin

Email: mitriy2@yandex.ru
D.Sc. (Engineering), Associate Professor, Moscow Automobile and Road Construction State Technical University (MADI), 64 Leningradsky prospect, Moscow, 125319, Russian Federation, mitriy2@yandex.ru

V. K. Koldyushov

Email: v.koldyushov@list.ru
Moscow Automobile and Road Construction State Technical University (MADI), 64 Leningradsky prospect, Moscow, 125319, Russian Federation, v.koldyushov@list.ru

References

  1. A review of post-processing technologies in additive manufacturing / X. Peng, L. Kong, J.Y.H. Fuh, H. Wang // Journal of Manufacturing and Materials Processing. – 2021. – Vol. 5 (2). – P. 38. – doi: 10.3390/jmmp5020038.
  2. Сундуков С.К. Ультразвуковые технологии в процессах получения неразъемных соединений. – М.: Техполиграфцентр, 2023. – 269 с. – ISBN 978-5-94385-209-1.
  3. Григорьев С.Н., Тарасова Т.В. Возможности технологии аддитивного производства для изготовления сложнопрофильных деталей и получения функциональных покрытий из металлических порошков // Металловедение и термическая обработка металлов. – 2015. – № 10 (724). – С. 5–10.
  4. Possibilities of additive technologies for the manufacturing of tooling from corrosion-resistant steels in order to protect parts surfaces from thermochemical treatment / A. Metel, T. Tarasova, E. Gutsaliuk, R. Khmyrov, S. Egorov, S. Grigoriev // Metals. – 2021. – Vol. 11 (10). – P. 1551. – doi: 10.3390/met11101551.
  5. Current surface issues in additive manufacturing / J. Magnien, P. Cosemans, N. Nutal, T. Kairet // Plasma Processes and Polymers. – 2020. – Vol. 17 (1). – P. 1900154. – doi: 10.1002/ppap.201900154.
  6. Tarasova T.V., Nazarov A.P., Prokof'ev M.V. Effect of the regimes of selective laser melting on the structure and physicomechanical properties of cobalt-base superalloys // The Physics of Metals and Metallography. – 2015. – Vol. 116 (6). – P. 601–605. – doi: 10.1134/S0031918X15060101.
  7. Ultrasonic methods for improving object surface quality prepared by corrosion-resistant steel powder selective laser melting / V.A. Aleksandrov, D.S. Fatyukhin, S.K. Sundukov, A.A. Filatova // Metal Science and Heat Treatment. – 2018. – Vol. 60 (5–6). – P. 381–386. – doi: 10.1007/s11041-018-0287-1.
  8. Перспективы применения ультразвуковых технологий в аддитивном производстве / С.Г. Конов, Д.В. Котобан, С.К. Сундуков, Д.С. Фатюхин // Наукоемкие технологии в машиностроении. – 2015. – № 9 (51). – С. 28–34.
  9. Tang C., Tan J.L., Wong C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting // International Journal of Heat and Mass Transfer. – 2018. – Vol. 126. – P. 957–968. – doi: 10.1016/j.ijheatmasstransfer.2018.06.073.
  10. Zhang B., Li Y., Bai Q. Defect formation mechanisms in selective laser melting: a review // Chinese Journal of Mechanical Engineering. – 2017. – Vol. 30. – P. 515–527. – doi: 10.1007/s10033-017-0121-5.
  11. On morphological surface features of the parts printed by selective laser melting (SLM) / M.H. Nasab, D. Gastaldi, N. Lecis, M. Vedani // Additive Manufacturing. – 2018. – Vol. 24. – P. 373–377. – doi: 10.1016/j.addma.2018.10.011.
  12. Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments / A.K. Singla, M. Banerjee, A. Sharma, J. Singh, A. Bansal, M.K. Gupta, N. Khanna, A.S. Shahi, D.K. Goyal // Journal of Manufacturing Processes. – 2021. – Vol. 64. – P. 161–187. – doi: 10.1016/j.jmapro.2021.01.009.
  13. Evolution mechanism of surface morphology and internal hole defect of 18Ni300 maraging steel fabricated by selective laser melting / Y. Bai, C. Zhao, D. Wang, H. Wang // Journal of Materials Processing Technology. – 2022. – Vol. 299. – P. 117328. – doi: 10.1016/j.jmatprotec.2021.117328.
  14. Surface characteristics enhancement and morphology evolution of selective-laser-melting (SLM) fabricated stainless steel 316L by laser polishing / C. Li, D. Liu, G. Liu, Sh. Liu, X. Jin, Y. Bai // Optics & Laser Technology. – 2023. – Vol. 162. – P. 109246. – doi: 10.1016/j.optlastec.2023.109246.
  15. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting / X. Shi, C. Yan, W. Feng, Y. Zhang, Z. Leng // Optics & Laser Technology. – 2020. – Vol. 132. – P. 106471. – doi: 10.1016/j.optlastec.2020.106471.
  16. Giorleo L., Ceretti E., Giardini C. Ti surface laser polishing: effect of laser path and assist gas // Procedia CIRP. – 2015. – Vol. 33. – P. 446–451. – doi: 10.1016/j.procir.2015.06.102.
  17. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing / A.Y. Kumar, Y. Bai, A. Eklund, C.B. Williams // Additive Manufacturing. – 2018. – Vol. 24. – P. 115–124. – doi: 10.1016/j.addma.2018.09.021.
  18. Effect of Hot Isostatic Pressure treatment on the Electron-Beam Melted Ti-6Al-4V specimens / V. Popov, A. Katz-Demyanetz, A. Garkun, G. Muller, E. Strokin, H. Rosenson // Procedia Manufacturing. – 2018. – Vol. 21. – P. 125–132. – doi: 10.1016/j.promfg.2018.02.102.
  19. Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing / E. Lyczkowska, P. Szymczyk, B. Dybala, E. Chlebus // Archives of Civil and Mechanical Engineering. – 2014. – Vol. 14 (4). – P. 586–594. – doi: 10.1016/j.acme.2014.03.001.
  20. Electrochemical polishing of selective laser melted Inconel 718 / S. Jain, M. Corliss, B. Tai, W.N. Hung // Procedia Manufacturing. – 2019. – Vol. 34. – P. 239–246. – doi: 10.1016/j.promfg.2019.06.145.
  21. Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating / S. Slegers, M. Linzas, J. Drijkoningen, J. D’;Haen, N.K. Reddy, W. Deferme // Coatings. – 2017. – Vol. 7. – P. 208. – doi: 10.3390/coatings7120208.
  22. Severe plastic deformation as a processing tool for strengthening of additive manufactured alloys / A. Hosseinzadeh, A. Radi, J. Richter, T. Wegener, S.V. Sajadifar, T. Niendorf, G.G. Yapici // Journal of Manufacturing Processes. – 2021. – Vol. 68 (2). – P. 788–795. – doi: 10.1016/j.jmapro.2021.05.070.
  23. Additive manufacturing with ultrasound / R.I. Nigmetzyanov, S.K. Sundukov, D.S. Fatyukhin, V.V. Grib, S.K. Kartsov // Russian Engineering Research. – 2017. – Vol. 37 (12). – P. 1070–1073. – doi: 10.3103/S1068798X17120140.
  24. Sundukov S.K. Ultrasonic vibration mechanism in making permanent joints // Steel in Translation. – 2024. – Vol. 54 (1). – P. 10–15. – doi: 10.3103/S0967091224700190.
  25. Effect of cavitation erosion wear, vibration tumbling, and heat treatment on additively manufactured surface quality and properties / S.N. Grigoriev, A.S. Metel, T.V. Tarasova, A.A. Filatova, S.K. Sundukov, M.A. Volosova, A.A. Okunkova, Y.A. Melnik, P.A. Podrabinnik // Metals. – 2020. – Vol. 10 (11). – P. 1540. – doi: 10.3390/met10111540.
  26. Influence of postprocessing on wear resistance of aerospace steel parts produced by laser powder bed fusion / A.S. Metel, S.N. Grigoriev, T.V. Tarasova, A.A. Filatova, S.K. Sundukov, M.A. Volosova, A.A. Okunkova, Y.A. Melnik, P.A. Podrabinnik // Technologies. – 2020. – Vol. 8 (4). – P. 73. – doi: 10.3390/technologies8040073.
  27. Tan K.L., Yeo S.H. Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing // Wear. – 2017. – Vol. 378–379. – P. 90–95. – doi: 10.1016/j.wear.2017.02.030.
  28. Tan K.L., Yeo S.H. Surface finishing on IN625 additively manufactured surfaces by combined ultrasonic cavitation and abrasion // Additive Manufacturing. – 2020. – Vol. 31. – P. 100938. – doi: 10.1016/j.addma.2019.100938.
  29. Wang J., Zhu J., Liew P.J. Material removal in ultrasonic abrasive polishing of additive manufactured components // Applied Sciences. – 2019. – Vol. 9 (24). – P. 5359. – doi: 10.3390/app9245359.
  30. Tan W.X., Tan K.W., Tan K.L. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components // Ultrasonics. – 2022. – Vol. 126. – P. 106829. – doi: 10.1016/j.ultras.2022.106829.
  31. Goh K.W.S., Tan K.L., Yeo S.H. Hybrid ultrasonic cavitation abrasive peening and electrochemical polishing on additively manufactured AlSi10Mg components // Proceedings of the 3rd International Conference on Advanced Surface Enhancement (INCASE) 2023. – Singapore: Springer, 2023. – P. 59–66. – doi: 10.1007/978-981-99-8643-9_7.
  32. Sun M., Toyserkani E. A novel hybrid ultrasound abrasive-driven electrochemical surface finishing technique for additively manufactured Ti6Al4V parts // Inventions. – 2024. – Vol. 9 (2). – P. 45. – doi: 10.3390/inventions9020045.
  33. Wang B., Castellana J., Melkote S.N. A hybrid post-processing method for improving the surface quality of additively manufactured metal parts // CIRP Annals. – 2021. – Vol. 70 (1). – P. 175–178. – doi: 10.1016/j.cirp.2021.03.010.
  34. Effect of electropolishing on ultrasonic cavitation in hybrid post-processing of additively manufactured metal surfaces / J.H. Jeon, N. Panpalia, A. Rashid, S.N. Melkote // Journal of Manufacturing Processes. – 2024. – Vol. 120. – P. 703–711. – doi: 10.1016/j.jmapro.2024.04.092.
  35. Rotary ultrasonic-assisted abrasive flow finishing and its fundamental performance in Al6061 machining / Q. Wang, M.S. Vohra, S. Bai, S.H. Yeo // The International Journal of Advanced Manufacturing Technology. – 2021. – Vol. 113. – P. 473–481. – doi: 10.1007/s00170-021-06666-7.
  36. Nagalingam A.P., Yuvaraj H.K., Yeo S.H. Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components // Additive Manufacturing. – 2020. – Vol. 33. – P. 101110. – doi: 10.1016/j.addma.2020.101110.
  37. Nagalingam A.P., Yeo S.H. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components // Wear. – 2018. – Vol. 414. – P. 89–100. – doi: 10.1016/j.wear.2018.08.006.
  38. Improving surface finish and wear resistance of additive manufactured nickel-titanium by ultrasonic nano-crystal surface modification / C. Ma, M.T. Andani, H. Qin, N.S. Moghaddam, H. Ibrahim, A. Jahadakbar, A. Amerinatanzi, Z. Ren, H. Zhang, G.L. Doll, Y. Dong, M. Elahinia, C. Ye // Journal of Materials Processing Technology. – 2017. – Vol. 249. – P. 433–440. – doi: 10.1016/j.jmatprotec.2017.06.038.
  39. Ultrasonic surface post-processing of hot isostatic pressed and heat treated superalloy parts manufactured by laser powder bed fusion / D.A. Lesyk, S. Martinez, B.N. Mordyuk, O.O. Pedash, V.V. Dzhemelinskyi, А. Lamikiz // Additive Manufacturing Letters. – 2022. – Vol. 3. – P. 100063. – doi: 10.1016/j.addlet.2022.100063.
  40. Effect of electropulsing-assisted ultrasonic nanocrystal surface modification on microstructures and hardness of additive manufactured Inconel 718 / Y. Ye, C. Zhang, L. Gao, L. Peng, G. Liu, Y. Zhang, C. Tang, T. Huang, C. Ye // Engineering Failure Analysis. – 2023. – Vol. 153. – P. 107611. – doi: 10.1016/j.engfailanal.2023.107611.
  41. Surface properties of additively manufactured 316L steel subjected to ultrasonic rolling / Q. Xu, Z. Qiu, D. Jiang, G. Cai, X. Yang, J. Liu, G. Li // Journal of Materials Engineering and Performance. – 2024. – Vol. 34 (2). – P. 1733–1742. – doi: 10.1007/s11665-024-09173-4.
  42. Amanov A., Karimbaev R.M. Effect of ultrasonic nanocrystal surface modification temperature: microstructural evolution, mechanical properties and tribological behavior of silicon carbide manufactured by additive manufacturing // Surface and Coatings Technology. – 2021. – Vol. 425. – P. 127688. – doi: 10.1016/j.surfcoat.2021.127688.
  43. Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy / P. Walker, S. Malz, E. Trudel, S. Nosir, M.S.A. ElSayed, L. Kok // Applied Sciences. – 2019. – Vol. 9 (22). – P. 4787. – doi: 10.3390/app9224787.
  44. Superior effects of hybrid laser shock peening and ultrasonic nanocrystalline surface modification on fatigue behavior of additive manufactured AlSi10Mg / E. Maleki, S. Bagherifard, O. Unal, A. Jam, S. Shao, M. Guagliano, N. Shamsaei // Surface and Coatings Technology. – 2023. – Vol. 463. – P. 129512. – doi: 10.1016/j.surfcoat.2023.129512.
  45. Effects of ultrasonic nanocrystal surface modification on the surface integrity, microstructure, and wear resistance of 300M martensitic ultra-high strength steel / W. Zhao, D. Liu, R. Chiang, H. Qin, X. Zhang, H. Zhang, J. Liu, Z. Ren, R. Zhang, G.L. Doll, V.K. Vasudevan, Y. Dong, C. Ye // Journal of Materials Processing Technology. – 2020. – Vol. 285. – P. 116767. – doi: 10.1016/j.jmatprotec.2020.116767.
  46. Teramachi A., Yan J. Improving the surface integrity of additive-manufactured metal parts by ultrasonic vibration-assisted burnishing // Journal of Micro and Nano-Manufacturing. – 2019. – Vol. 7 (2) – P. 024501. – doi: 10.1115/1.4043344.
  47. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension / A.V. Panin, M.S. Kazachenok, A.I. Dmitriev, A.Y. Nikonov, O.B. Perevalova, L.A. Kazantseva, E.A. Sinyakova, S.A. Martynov // Materials Science and Engineering: A. – 2022. – Vol. 832. – P. 142458. – doi: 10.1016/j.msea.2021.142458.
  48. Розенберг Л.Д. Физика и техника мощного ультразвука. Т. 3. Физические основы ультразвуковой технологии. – М.: Наука, 1970. – 689 с.
  49. Сундуков С.К. Особенности наложения ультразвуковых колебаний в процессе сварки // Обработка металлов (технология, оборудование, инструменты). – 2022. – Т. 24, № 2. – С. 50–66. – doi: 10.17212/1994-6309-2022-24.2-50-66.
  50. Приходько В.М. Ультразвуковые технологии при производстве и ремонте автотракторной техники. – М.: Техполиграфцентр, 2000. – 252 с. – ISBN 5-900095-16-9.
  51. Comparison of the effects of ultrasonic cavitation on the surfaces of 45 and 40Kh steels / D.S. Fatyukhin, R.I. Nigmetzyanov, V.M. Prikhodko, A.V. Sukhov, S.K. Sundukov // Metals. – 2022. – Vol. 12 (1). – P. 138. – doi: 10.3390/met12010138.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».