Effect of impact processing on the structure and properties of nickel alloy ZhS6U produced by casting and electron beam additive manufacturing

Cover Page

Cite item

Full Text

Abstract

Introduction. Nickel alloys are widely used in the aerospace industry, but their operational characteristics require improvement through surface modification. A relevant challenge is to conduct a comparative analysis of mechanical impulse processing methods for cast and additively manufactured ZhS6U alloy to optimize their properties. The purpose of this work is to investigate the influence of low-frequency (LF) and high-frequency (HF) impact processing on the structural-phase state and surface properties of nickel alloy ZhS6U, produced by electron beam additive manufacturing (EBAM) and casting. The research methods include microstructural analysis using optical microscopy, X-ray diffraction analysis of the phase composition, microhardness measurements, and tribological testing via scratch testing of ZhS6U alloy samples after various processing modes. Results and discussion. It is established that LF processing of the cast alloy increases the volume fraction of the strengthening γ' phase, while HF processing forms an additional Ti2O phase. The processing of the additive alloy demonstrates more significant changes: micro-strains in the crystal lattice are 1.71…2.18 times higher, micro-stresses in the surface layer are 2.09…2.73 times higher, and the microhardness of the processed surface of the additively manufactured ZhS6U alloy is 8…16% higher compared to the cast material. Optimal processing modes are identified to be: 40 seconds for LF and 20 minutes for HF, providing a minimum friction coefficient of 0.075. Conclusions. Mechanical impulse processing effectively hardens the surface of nickel alloy ZhS6U fabricated by different methods. The application of the developed approaches is recommended to improve the performance characteristics of parts in the aerospace and mechanical engineering industries. Further research is required on the cyclic stability of modified structures after mechanical impulse processing in various frequency ranges.

About the authors

A. V. Vorontsov

Email: vav@ispms.ru
Ph.D. (Engineering), Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, vav@ispms.ru

A. O. Panfilov

Email: alexpl@ispms.tsc.ru
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, alexpl@ispms.tsc.ru

A. V. Nikolaeva

Email: nikolaeva@ispms.tsc.ru
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, nikolaeva@ispms.tsc.ru

A. M. Cheremnov

Email: amc@ispms.ru
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, amc@ispms.ru

E. O. Knyazhev

Email: clothoid@ispms.tsc.ru
Institute of Strength Physics and Materials Sciences SB RAS, 2/4, pr. Akademicheskii, Tomsk, 634055, Russian Federation, clothoid@ispms.tsc.ru

References

  1. Pollock T.M., Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties // Journal of Propulsion and Power. – 2006. – Vol. 22 (2). – P. 361–374. – doi: 10.2514/1.18239.
  2. Microstructure evolution during supersolvus heat treatment of a powder metallurgy nickel-base superalloy / S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, T.P. Gabb // Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. – 2012. – Vol. 43. – P. 1649–1661. – doi: 10.1007/s11661-011-1035-y.
  3. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys / J. Zhang, T. Huang, L. Liu, H. Fu // Acta Metallurgica Sinica. – 2015. – Vol. 51 (10). – P. 1163–1178. – doi: 10.11900/0412.1961.2015.00448.
  4. Directional solidification of a nickel-based superalloy product structure fabricated on stainless steel substrate by electron beam additive manufacturing / S.V. Fortuna, D.A. Gurianov, K.N. Kalashnikov, A.V. Chumaevskii, Yu.P. Mironov, E.A. Kolubaev // Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. – 2021. – Vol. 52. – P. 857–870. – doi: 10.1007/s11661-020-06090-8.
  5. Evolution of structure and properties of the nickel-based alloy EP718 after the SLM growth and after different types of heat and mechanical treatment / D. Ivanov, A. Travyanov, P. Petrovskiy, V. Cheverikin, Е. Alekseeva, A. Khvan, I. Logachev // Additive Manufacturing. – 2017. – Vol. 18. – P. 269–275. – doi: 10.1016/j.addma.2017.10.015.
  6. Additive manufacturing of nickel superalloys: opportunities for innovation and challenges related to qualification / S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M. Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee, R.R. Dehoff // Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. – 2018. – Vol. 49. – P. 3764–3780. – doi: 10.1007/s11661-018-4702-4.
  7. Effect of laser shock peening without coating on surface morphology and mechanical properties of Nickel-200 / A. Kulkarni, S. Chettri, S. Prabhakaran, S. Kalainathan // Mechanics of Materials Science and Engineering. – 2017. – Vol. 9. – doi: 10.2412/mmse.55.5.304.
  8. Carter T.J. Common failures in gas turbine blades // Engineering Failure Analysis. – 2005. – Vol. 12. – P. 237–247. – doi: 10.1016/j.engfailanal.2004.07.004.
  9. Kim H. Study of the fracture of the last stage blade in an aircraft gas turbine // Engineering Failure Analysis. – 2009. – Vol. 16 (7). – P. 2318–2324. – doi: 10.1016/j.engfailanal.2009.03.017.
  10. Silveira E., Atxaga G., Irisarri A.M. Failure analysis of two sets of aircraft blades // Engineering Failure Analysis. – 2010. – Vol. 17 (3). – P. 641–647. – doi: 10.1016/j.engfailanal.2008.10.015.
  11. Karthik D., Swaroop S. Laser shock peening enhanced corrosion properties in a nickel-based Inconel 600 superalloy // Journal of Alloys and Compounds. – 2017. – Vol. 694. – P. 1309–1319. – doi: 10.1016/j.jallcom.2016.10.093.
  12. Microstructural evolution and mechanical properties of selective laser melted nickel-based superalloy after post treatment / L. Chen, Y. Sun, L. Li, X. Ren // Materials Science and Engineering A. – 2020. – Vol. 792. – P. 139649. – doi: 10.1016/j.msea.2020.139649.
  13. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000 °C / M. Chen, M. Shen, S. Zhu, F. Wang, X. Wang // Corrosion Science. – 2013. – Vol. 73. – P. 331–341. – doi: 10.1016/j.corsci.2013.04.022.
  14. Ghara T., Paul S., Bandyopadhyay P.P. Effect of grit blasting parameters on surface and near-surface properties of different metal alloys // Journal of Thermal Spray Technology. – 2021. – Vol. 30. – P. 251–269. – doi: 10.1007/s11666-020-01127-1.
  15. Surface nanocrystallization and enhanced surface mechanical properties of nickel-based superalloy by coupled electric pulse and ultrasonic treatment / R. Ji, Z. Yang, H. Jin, Y. Liu, H. Wang, Q. Zheng, W. Cheng, B. Cai, X. Li // Surface and Coatings Technology. – 2019. – Vol. 375. – P. 292–302. – doi: 10.1016/j.surfcoat.2019.07.037.
  16. "Target effect" of pulsed current on the texture evolution behaviour of Ni-based superalloy during electrically-assisted tension / X. Zhang, H. Li, G. Shao, J. Gao, M. Zhan // Journal of Alloys and Compounds. – 2022. – Vol. 898. – P. 162762. – doi: 10.1016/j.jallcom.2021.162762.
  17. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy / C. Wang, X.J. Shen, Z.B. An, L.C. Zhou, Y. Chai // Materials Design. – 2016. – Vol. 89. – P. 582–588. – doi: 10.1016/j.matdes.2015.10.022.
  18. Ultrasonic nanocrystal surface modification effect on reduction of hydrogen embrittlement in Inconel-625 parts fabricated via additive manufacturing process / S.-H. Baek, S. He, M.-S. Jang, D.-H. Back, D.-W. Jeong, S.-H. Park // Journal of Manufacturing Processes. – 2023. – Vol. 108. – P. 685–695. – doi: 10.1016/j.jmapro.2023.11.024.
  19. Воронцов А.В., Утяганова В.Р., Зыкова А.П. Влияние ударной обработки в разных частотных диапазонах на эволюцию структурно-фазового состояния поверхности перлитной стали // Известия высших учебных заведений. Физика. – 2024. – Т. 67, № 6. – С. 32–38. – doi: 10.17223/00213411/67/6/5.
  20. Effect of electropulsing treatment on corrosion behavior of nickel base corrosion-resistant alloy / Y. Liu, L. Wang, H. Liu, B. Zhang, G. Zhao // Transactions of Nonferrous Metals Society of China. – 2011. – Vol. 21 (9). – P. 1970–1975. – doi: 10.1016/s1003-6326(11)60958-8.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».