Simulation of the rolling process of a laminated composite AMg3/D16/AMg3

Cover Page

Cite item

Abstract

Introduction. Over the past decades, laminated composites based on aluminum alloys have been increasingly used in the aerospace and automotive industries. Laminated composites are usually produced by accumulative roll bonding, which results in the metallurgical bonding of initially prepared sheets. Hence, the main task of accumulative roll bonding is to obtain a reliable bond between materials. However, at present, the process of joining similar or dissimilar materials by plastic deformation is still a poorly understood phenomenon. In this regard, in recent years, methods of finite element modeling of the processes of joining materials have begun to develop intensively. The purpose of the work is to establish a relationship between stress-strain state parameters and the formation of a stable bond between aluminum alloys of different compositions. To achieve this goal, the following tasks are formulated: 1. Simulation of the laminated composite “AMg3/D16/AMg3” rolling process using data corresponding to physical experiments carried out at the Institute of Engineering Science of the Ural Branch of the Russian Academy of Sciences; 2. Selection and analysis of the most important stress-strain state parameters of the laminated composite “AMg3/D16/AMg3” rolling process. Research methods. Process simulation system Deform-3D was chosen as the main research tool. Results and Discussion. An analysis of the coordinate grid distortion and velocity vectors of material flow of layers revealed that the deformation is distributed inhomogeneously in the cross section after rolling: the outer layers flow more intensively compared to the middle layer. The maximum scatter of strain intensity ei in the cross section, observed at a maximum reduction ratio of 75%, is 12%. This allows one to accept for analytical calculations in the first approximation the assumption of deformation uniformity. A relationship is established between the beginning of the formation of a bond between composite layers and the threshold expansion of the contact surface and normal pressure at the interlayer boundary. In the final part of the study, future directions for improving the approaches of simulation the laminated composites rolling processes are proposed.

About the authors

D. R. Salikhyanov

Email: d.r.salikhianov@urfu.ru
Ph.D. (Engineering), Associate Professor, 1. Institute of New Materials and Technologies, Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira Str., Ekaterinburg, 620002, Russian Federation; 2.Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya Str., Ekaterinburg, 620049, Russian Federation; d.r.salikhianov@urfu.ru

N. S. Michurov

Email: n.michurov@ya.ru
1. Institute of Engineering Science, Ural Branch of the Russian Academy of Sciences, 34 Komsomolskaya Str., Ekaterinburg, 620049, Russian Federation; 2. Ural Institute of State Fire Service of EMERCOM of Russia, 22 Mira Str., Ekaterinburg, 620062, Russian Federation; n.michurov@ya.ru

References

  1. Williams J.C., Starke E.A. Progress in structural materials for aerospace systems // Acta Materialia. – 2003. – Vol. 51. – P. 5775–5799. – doi: 10.1016/j.actamat.2003.08.023.
  2. Ghalehbandi S.M., Malaki M., Gupta M. Accumulative roll bonding – A Review // Applied Sciences. – 2019. – Vol. 9. – P. 3627. – doi: 10.3390/app9173627.
  3. Salikhyanov D. Contact mechanism between dissimilar materials under plastic deformation // Comptes Rendus Mecanique. – 2019. – Vol. 347. – P. 588–600. – doi: 10.1016/j.crme.2019.07.002.
  4. Jamaati R., Toroghinejad M.R. Cold roll bonding bond strengths: review // Materials Science and Technology. – 2011. – Vol. 27, iss. 7. – P. 1101–1108. – doi: 10.1179/026708310X12815992418256.
  5. Li L., Nagai K., Yin F. Progress in cold roll bonding of metals // Science and Technology of Advanced Materials. – 2008. – Vol. 9. – P. 023001. – doi: 10.1088/1468-6996/9/2/023001.
  6. Jamaati R., Toroghinejad M.R. The role of surface preparation parameters on cold roll bonding of aluminum strips // Journal of Materials Engineering and Performance. – 2011. – Vol. 20. – P. 191–197. – doi: 10.1007/s11665-010-9664-7.
  7. Madaah-Hosseini H.R., Kokabi A.H. Cold roll bonding of 5754-aluminum strips // Materials Science and Engineering A. – 2002. – Vol. 335. – P. 186–190. – doi: 10.1016/S0921-5093(01)01925-6.
  8. Heydari Vini M., Sedighi M., Mondali M. Investigation of bonding behavior of AA1050/AA5083 bimetallic laminates by roll bonding technique // Transactions of the Indian Institute of Metals. – 2018. – Vol. 71, iss. 9. – P. 2089–2094. – doi: 10.1007/s12666-017-1058-1.
  9. Heydari Vini M., Daneshmand S., Forooghi M. Roll bonding properties of Al/Cu bimetallic laminates fabricated by the roll bonding technique // Technologies. – 2017. – Vol. 5 (2). – P. 32. – doi: 10.3390/technologies5020032.
  10. Govindaraj N.V., Lauvdal S., Holmedal B. Tensile bond strength of cold roll bonded aluminium sheets // Journal of Materials Processing Technology. – 2013. – Vol. 213. – P. 955–960. – doi: 10.1016/j.jmatprotec.2013.01.007.
  11. Huang M.N., Tzou G.Y., Syu S.W. Investigation on comparisons between two analytical models of sandwich sheet rolling bonded before rolling // Journal of Materials Processing Technology. – 2003. – Vol. 140. – P. 598–603. – doi: 10.1016/S0924-0136(03)00799-4.
  12. Danesh Manesh H., Karimi Taheri A. Theoretical and experimental investigation of cold rolling of tri-layer strip // Journal of Materials Processing Technology. – 2005. – Vol. 166. – P. 163–172. – doi: 10.1016/j.jmatprotec.2004.08.010.
  13. An investigation of interface bonding of bimetallic foils by combined accumulative roll bonding and asymmetric rolling techniques / H. Yu, A. Kiet Tieu, Ch. Lu, A. Godbole // Metallurgical and Materials Transactions A. – 2014. – Vol. 45A. – P. 4038–4045. – doi: 10.1007/s11661-014-2311-4.
  14. Joining by plastic deformation / K.-I. Mori, N. Bay, L. Fratini, F. Micari, A.E. Tekkaya // CIRP Annals – Manufacturing Technology. – 2013. – Vol. 62. – P. 673–694. – doi: 10.1016/j.cirp.2013.05.004.
  15. A finite element framework for the evolution of bond strength in joining-by-forming processes / M. Bambach, M. Pietryga, A. Mikloweit, G. Hirt // Journal of Materials Processing Technology. – 2014. – Vol. 214. – P. 2156–2168. – doi: 10.1016/j.jmatprotec.2014.03.015.
  16. Kebriaei R., Vladimirov I.N., Reese S. Joining of the alloys AA1050 and AA5754 – Experimental characterization and multiscale modeling based on a cohesive zone element technique // Journal of Materials Processing Technology. – 2014. – Vol. 214. – P. 2146–2155. – doi: 10.1016/j.jmatprotec.2014.03.014.
  17. Modeling of joining by plastic deformation using a bonding interface finite element / K. Khaledi, Sh. Rezaei, S. Wulfinghoff, S. Reese // International Journal of Solids and Structures. – 2019. – Vol. 160. – P. 68–79. – doi: 10.1016/j.ijsolstr.2018.10.014.
  18. Khaledi K., Brepols T., Reese S. A multiscale description of bond formation in cold roll bonding considering periodic cracking of thin surface films // Mechanics of Materials. – 2019. – Vol. 137. – P. 103142. – doi: 10.1016/j.mechmat.2019.103142.
  19. Salikhyanov D., Kamantsev I., Michurov N. Technological shells in rolling processes of thin sheets from hard-to-deform materials // Journal of Materials Engineering and Performance. – 2023. – doi: 10.1007/s11665-023-07834-4.
  20. Буркин С.П., Бабайлов Н.А., Овсянников Б.В. Сопротивление деформации сплавов Al и Mg: справочное пособие. – Екатеринбург: УрФУ, 2010. – 344 с. – ISBN 978-5-321-01755-5.
  21. Bay N. Mechanisms producing metallic bonds in cold welding // Welding Research Supplement. – 1983. – N 5. – P. 137–142.
  22. A microscale finite element model for joining of metals by large plastic deformations / K. Khaledi, Sh. Rezaei, S. Wulfinghoff, S. Reese // Comptes Rendus Mecanique. – 2018. – Vol. 346. – P. 743–755. – doi: 10.1016/j.crme.2018.05.005.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).