Influence of the shape of the toroidal flank surface on the cutting wedge angles and mechanical stresses along the drill cutting edge

Cover Page

Cite item

Abstract

Introduction. Drilling holes with standard tolerance varying from IT8 to IT12 is widely used in industrial production. However, at present time, there are neither comprehensive studies, nor scientifically justified recommendations for the rational choice of the geometry of the cutting part of drills with a toroidal flank surface. Therefore, the computer-aided design (CAD) of new drill designs with a toroidal flank surface and finite element modeling (FEM) of the stressed state of its cutting part are important tasks. The purpose of the work is reducing both the range of change in the rake angle and the wedge angle of the cutting wedge along the cutting edge from the periphery to the center and the equivalent stresses in the cutting wedge. In this paper we investigate changes in the rake and wedge angles of the cutting wedge depending on the radius of the generatrix line of the toroidal flank surface as well as changes in equivalent stresses in the cutting wedge, which depend on changes in the radius of the generatrix line of the toroidal flank surface. The research methods include the fundamentals of the theory of cutting, CAD methods, and the FEM, which was applied in this work to new drill designs. Results and discussion. It is found that the range of changes in the rake angle and the wedge angle of the cutting wedge of the drill decreases compared to the standard design with decreasing radius of the generatrix line of the flank surface. A CAD system for drills with a toroidal flank surface is developed. As a result, the range of changes in the rake angle along the cutting edge decreased by 86 % for a drill with a minimum radius of the generatrix line of the toroidal surface compared to that with the conical flank surface, the range of the wedge angle of the cutting wedge decreased by 56 %, and the maximum equivalent stresses decreased by 2.13 times. It is also important to note that in this case, the wedge angle is close to constant for half of the drill tooth. These indicators exceed those for existing designs of the twist drills that indicate the key achievement of this paper.

About the authors

P. M. Pivkin

Email: pmpivkin@gmail.com
Ph.D. (Engineering), Moscow State University of Technology "STANKIN", 3a Vadkovski Lane., Moscow, 127055, Russian Federation, pmpivkin@gmail.com

A. A. Ershov

Email: a.ershov@stankin.ru
Moscow State University of Technology "STANKIN", 3a Vadkovski Lane., Moscow, 127055, Russian Federation, a.ershov@stankin.ru

N. E. Mironov

Email: dzr1380im@gmail.com
Moscow State University of Technology "STANKIN", 3a Vadkovski Lane., Moscow, 127055, Russian Federation, dzr1380im@gmail.com

A. B. Nadykto

Email: a.nadykto@stankin.ru
D.Sc. (Physics and Mathematics), Professor, Moscow State University of Technology "STANKIN", 3a Vadkovski Lane., Moscow, 127055, Russian Federation, a.nadykto@stankin.ru

References

  1. Режущий инструмент / Д.В. Кожевников, В.А. Гречишников, С.В. Кирсанов, В.И. Кокарев, А.Г. Схиртладзе; под ред. С.В. Кирсанова. – 3-е изд. – М.: Машиностроение, 2007. – 526 с. – ISBN 978-5-217-03373-7.
  2. Семенченко И.И., Матюшин В.М., Сахаров Г.Н. Проектирование металлорежущих инструментов. – М.: Машгиз, 1963. – 952 с.
  3. An applied explicit mathematical model of conical drill point geometry without flank rubbing / T. Zeng, Z.C. Chen, Z. Liu, Z. Yi, S. Wang // The International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 106 (9–10). – P. 3707–3720. – doi: 10.1007/s00170-019-04759-y.
  4. Патент № 2528593 Российская Федерация. Спиральное сверло с криволинейными режущими кромками: заявл. 17.12.2012: опубл. 20.09.2014 / Ю.Е. Петухов, А.А. Водовозов.
  5. Investigation of the effects of drill geometry on drilling performance and hole quality / M. Yavuz, H. Gökçe, I. Çiftçi, H. Gökçe, Ç. Yavas, U. Seker // The International Journal of Advanced Manufacturing Technology. – 2020. – Vol. 106 (9–10). – P. 4623–4633. – doi: 10.1007/s00170-019-04843-3.
  6. Abele E., Fujara M. Simulation-based twist drill design and geometry optimization // CIRP Annals. – 2010. – Vol. 59 (1). – P. 145–150. – doi: 10.1016/j.cirp.2010.03.063.
  7. Pirtini M., Lazoglu I. Forces and hole quality in drilling // International Journal of Machine Tools and Manufacture. – 2005. – Vol. 45 (11). – P. 1271–1281. – doi: 10.1016/j.ijmachtools.2005.01.004.
  8. Ren K., Ni J. Analyses of drill flute and cutting angles // The International Journal of Advanced Manufacturing Technology. – 1999. – Vol. 15 (8). – P. 546–553. – doi: 10.1007/s001700050100.
  9. A new method for the precise determination of rational geometric parameters of the helical groove and cutting part of high-performance tri-flute / P.M. Pivkin, V.A. Grechishnikov, A.A. Ershov, A.B. Nadykto // Proceedings of SPIE. – 2020. – Vol. 11540. – P. 1154014. – doi: 10.1117/12.2574392.
  10. Grigor'ev S.N. Volosova M.A. Complex surface hardening of oxide-carbide ceramic cutting tools // Russian Engineering Research. – 2005. – Vol. 25 (9). – P. 7–12.
  11. Geometry modifications of single-lip drills to improve cutting fluid flow / A. Baumann, E. Oezkaya, D. Biermann, P. Eberhard // The International Journal of Advanced Manufacturing Technology. – 2022. – Vol. 121 (3–4). – P. 1689–1695. – doi: 10.1007/s00170-022-09400-z.
  12. Grigor’;ev S.N., Myachenkov V.I., Kuzin V.V. Automated thermal-strength calculations of ceramic cutting plates // Russian Engineering Research. – 2011. – Vol. 31 (11). – P. 1060–1066. – doi: 10.3103/S1068798X11110086.
  13. Study on nano-cutting of brittle material by molecular dynamics using dynamic modeling / J. Wang, X. Zhang, F Fang, F. Xu, R. Chen, Z. Xue // Computational Materials Science. – 2020. – Vol. 183. – P. 109851. – doi: 10.1016/j.commatsci.2020.109851.
  14. A review of simulation and experiment research on cutting mechanism and cutting force in nanocutting process / D. Chen, S. Wu, Y. He, Y. Luo, X. Wang // The International Journal of Advanced Manufacturing Technology. – 2022. – Vol. 121 (3–4). – P. 1533–1574. – doi: 10.1007/s00170-022-09051-0.
  15. Finite element modelling and experimental validation of the graphite cutting process / D. Yang, F. Wei, W. Wang, Y. Zhang, L. Zeng // Processes. – 2023. – Vol. 11 (9). – P. 2546. – doi: 10.3390/pr11092546.
  16. Wang J., Fang F., Li L. Cutting of graphite at atomic and close-to-atomic scale using flexible enhanced molecular dynamics // Nanomanufacturing and Metrology. – 2022. – Vol. 5 (3). – P. 240–249. – doi: 10.1007/s41871-022-00128-8.
  17. Wang J., Fang F. Nanometric cutting mechanism of silicon carbide // CIRP Annals. – 2021. – Vol. 70 (1). – P. 29–32. – doi: 10.1016/j.cirp.2021.04.068.
  18. Effect of boron-doped diamond interlayer on cutting performance of diamond coated micro drills for graphite machining / X. Lei, L. Wang, B. Shen, F. Sun, Z. Zhang // Materials. – 2013. – Vol. 6 (8). – P. 3128–3138. – doi: 10.3390/ma6083128.
  19. Agapiou J.S., DeVries M.F. On the determination of thermal phenomena during drilling. Part I. Analytical models of twist drill temperature distributions / J.S. Agapiou, M.F. DeVries // International Journal of Machine Tools and Manufacture. – 1990. – Vol. 30 (2). – P. 203–215. – doi: 10.1016/0890-6955(90)90130-B.
  20. Thermal aspects in deep hole drilling of aluminium cast alloy using twist drills and MQL / D. Biermann, I. Iovkov, H. Blum, A. Rademacher, K. Taebi, F.T. Suttmeier, N. Klein // Procedia CIRP. – Vol. 3. – P. 245–250. – doi: 10.1016/j.procir.2012.07.043.
  21. Image processing of advance milling cutters to automate the measurement of the geometric parameters of the cutting edge on optical measuring systems / P.M. Pivkin, I.V. Minin, M.A. Volosova, V.B. Romanov, A.B. Nadykto // Proceedings SPIE. – 2021. – Vol. 11914. – P. 1191412. – doi: 10.1117/12.2605754.
  22. Wang Q., Wang D., Fang Y. Research on chip mechanism of Inconel 718 with ultrasonic assisted drilling by step drill // The International Journal of Advanced Manufacturing Technology. – 2023. – Vol. 126 (5–6). – P. 2579–2594. – doi: 10.1007/s00170-023-11212-8.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».