Numerical study of titanium alloy high-velocity solid particle erosion

Cover Page

Cite item

Full Text

Abstract

Introduction. Predicting solid particle erosion (SPE) in gaseous flow and managing its intensity is still a relevant problem in mechanical engineering. It requires the development of a general modeling methodology, which also depends upon many special cases studying various physical processes. Such studies should also include verification analysis, process parameters and model sensitivity studies. Mainly computational fluid dynamics and finite element analysis (and mesh-free methods such as smooth particle hydrodynamics or similar) are used to simulate the erosion process. Papers focused on CFD simulation of solid particle erosion of metal alloys are widely presented, but most of it is associated with relatively low or medium particle velocities (< 100–150 m/s) and is close to uniform diameter distribution. This paper presents a CFD study of Ti6Al4V titanium alloy SPE at relatively high particle velocities and sufficiently non-uniform unimodal particle diameter distribution. The paper also studies the turbulence model influence and particle shape effect which appears as a “shape factor” coefficient in the particle drag model. Methods. The heterogenous flow simulation was based on the Reynolds-averaged Navier-Stokes formulation, where the particles, according to Euler-Lagrange formulation, were simulated as mathematical points with corresponding properties. The influence of turbulence models, such as k-epsilon standard, RNG k-epsilon, and a relatively new Generalized equation k-omega (GEKO) model and its coefficients were also studied. Oka and DNV erosion models were also compared based on the general sample mass loss and more specific erosion intensity profile criterions. The simulation results were compared to the lab-scale experimental results. Results and discussion. It is shown that neither erosion intensity profile or sample mass loss do not depend upon the turbulence model choice or GEKO parameters variation. As expected, erosion is dependent on the erosion model and its coefficients. A notable influence of the shape factor is shown. As the drag coefficient increased due to the particle shape, the erosion intensity decreased and the erosive profile on the surface also changed due to the changing velocity and diameter distribution of the heterogenous flow. It is expected that such results would be useful not only for erosion prediction in all areas of mechanical engineering, but also for wear management in mechanical assemblies and shot peening / shot peen forming management and simulation.

About the authors

E. A. Strokach

Email: evgenij.strokatsch@mai.ru
Ph.D. (Engineering), Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russian Federation, evgenij.strokatsch@mai.ru

G. D. Kozhevnikov

Email: kozhevnikov.mai@yandex.ru
Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russian Federation, kozhevnikov.mai@yandex.ru

A. A. Pozhidaev

Email: pozhidaev.mai@xmail.ru
Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russian Federation, pozhidaev.mai@xmail.ru

S. V. Dobrovolsky

Email: dobrovolskiy_s@mail.ru
Ph.D. (Engineering), Associate Professor, Moscow Aviation Institute (National Research University), 4 Volokolamskoe shosse, Moscow, 125993, Russian Federation, dobrovolskiy_s@mail.ru

References

  1. Analysis of micro and nano particle erosion by analytical, numerical and experimental methods: A review / S.M. Shinde, D.M. Kawadekar, P.A. Patil, V.K. Bhojwani // Journal of Mechanical Science and Technology. – 2019. – Vol. 33 (5). – P. 2319–2329. – DOI: 10.1007.s12206-019-0431-x.
  2. Computational fluid dynamics (CFD) based erosion prediction model in elbows / H.D. Hadziahmetovic, N. Hodzic, D. Kahrimanovic, E. Dzaferovic // Tehnicki vjesnik = Technical Gazette. – 2014. – Vol. 21 (2). – P. 275–282.
  3. Sun K., Lu L., Jin H. Modeling and numerical analysis of the solid particle erosion in curved ducts // Abstract and Applied Analysis. – 2013. – Vol. 2013. – Art. 245074. – doi: 10.1155/2013/245074.
  4. Finnie I. Erosion of surfaces by solid particles // Wear. – 1960. – Vol. 3 (2). – P. 87–103. – doi: 10.1016/0043-1648(60)90055-7.
  5. Grant G., Ball R., Tabakoff W. An experimental study of the erosion rebound characteristics of high-speed particles impacting a stationary specimen: Report No. 73-36. – Cincinnati University Ohio, Department of Aerospace Engineering, 1973.
  6. Bitter J.G.A. A study of erosion phenomena: Part I // Wear. – 1963. – Vol. 6 (1). – P. 5–21. – doi: 10.1016/0043-1648(63)90003-6.
  7. Bitter J.G.A. A study of erosion phenomena: Part II // Wear. – 1963. – Vol. 6 (3). – P. 169–190. – doi: 10.1016/0043-1648(63)90073-5.
  8. Строкач Е.А., Кожевников Г.Д., Пожидаев А.А. Численное моделирование процесса эродирования твердыми частицами в газовом потоке (обзор) // Вестник ПНИПУ. Аэрокосмическая техника. – 2021. – № 67. – С. 56–69. – doi: 10.15593/2224-9982/2021.67.06.
  9. Tarodiya R., Levy A. Surface erosion due to particle-surface interactions – A review // Powder Technology. – 2021. – Vol. 387. – P. 527–559. – doi: 10.1016/j.powtec.2021.04.055.
  10. Krella A. Resistance of PVD coatings to erosive and wear processes: A review // Coatings. – 2020. – Vol. 10. – P. 921. – doi: 10.3390/coatings10100921.
  11. Fardan A., Berndt C.C., Ahmed R. Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review // Surface and Coatings Technology. – 2021. – Vol. 409. – doi: 10.1016/j.surfcoat.2021.126835.
  12. Bonu V., Barshilia H.C. High-temperature solid particle erosion of aerospace components: its mitigation using advanced nanostructured coating technologies // Coatings. – 2022. – Vol. 12. – P. 1979. – doi: 10.3390/coatings12121979.
  13. Taherkhani B., Anaraki A.P., Kadkhodapour J. Erosion due to solid particle impact on the turbine blade: experiment and simulation / B. Taherkhani, A.P. Anaraki, J. Kadkhodapour, N.K. Farahani, H. Tu // Journal of Failure Analysis and Prevention. – 2019. – Vol. 19 (6). – P. 1739–1744. – doi: 10.1007/s11668-019-00775-y.
  14. Khoddami A.S., Salimi-Majd D., Mohammadi B. Finite element and experimental investigation of multiple solid particle erosion on Ti–6Al–4V titanium alloy coated by multilayer wear-resistant coating // Surface and Coatings Technology. – 2019. – Vol. 372 (2). – P. 173–189. – doi: 10.1016/j.surfcoat.2019.05.042.
  15. Numerical modeling of sand particle erosion at return bends in gas-particle two-phase flow / A. Farokhipour, Z. Mansoori, M. Saffar-Avval, G. Ahmadi // Scientia Iranica. – 2018. – Vol. 25 (6). – P. 3231–3242. – doi: 10.24200/sci.2018.50801.1871.
  16. Numerical analysis of particle erosion in the rectifying plate system during shale gas extraction / S. Peng, Q. Chen, C. Shan, D. Wang // Energy Science & Engineering. – 2019. – Vol. 7 (5). – P. 1838–1851. – doi: 10.1002/ese3.395.
  17. Prediction of particle erosion in the internal cooling channels of a turbine blade / D. Anielli, D. Borello, F. Rispoli, A. Salvagni, P. Venturini // 11th European Turbomachinery Conference, 23 March 2015, Madrid, Spain. – Madrid, 2015. – P. 1–11.
  18. Numerical study of erosion due to solid particles in steam turbine blades / A. Campos-Amezcua, Z. Mazur, A. Gallegos-Muñoz, A. Romero-Colmenero, J. Manuel Riesco-Ávila, J. Martín Medina-Flores // Numerical Heat Transfer, Part A: Applications. – 2008. – Vol. 53 (6). – P. 667–684. – doi: 10.1080/10407780701453933.
  19. Arabnejad H. Development of erosion equations for solid particle and liquid droplet impact. Ph.D. diss. / Department of Mechanical Engineering, The University of Tulsa. – Tulsa, 2015. – 161 p.
  20. Mansouri A. A combined CFD-experimental method for developing an erosion equation for both gas-sand and liquid-sand flows. Ph.D. diss. / Department of Mechanical Engineering, The University of Tulsa. – Tulsa, 2016. – 217 p.
  21. Effect of morphology, impact velocity and angle of the CaO-MgO-Al2O3-SiO2 (CMAS) particle on the erosion behavior of thermal barrier coatings (TBCs): a finite element simulation study / Y. Liu, Z. Cao, J. Yuan, X. Sun, H. Su, L. Wang // Coatings. – 2022. – Vol. 12 (5). – P. 576. – doi: 10.3390/coatings12050576.
  22. Finite element simulations on erosion and crack propagation in thermal barrier coatings / Z.S. Ma, L.H. Fu, L. Yang, Y.C. Zhou, C. Lu // High Temperature Materials and Processes. – 2015. – Vol. 34 (4). – P. 387–393. – doi: 10.1515/htmp-2014-0068.
  23. Finite element analysis of erosive wear for offshore structure / Z.G. Liu, S. Wan, V.B. Nguyen, Y.W. Zhang // 13th International Conference on Fracture, 16–21 June 2013, Beijing, China. – Beijing, China, 2013. – P. 461–468.
  24. Oviedo F., Valarezo A. Residual stress in high-velocity impact coatings: parametric finite element analysis approach // Journal of Thermal Spray Technology. – 2020. – Vol. 29 (6). – P. 1268–1288. – doi: 10.1007/s11666-020-01026-5.
  25. Bing Wu, Fengfang Wu, Jinjie Li. Finite element modeling of correlating mechanical properties with erosion wear rate // Proceedings of the 2018 3rd International Conference on Electrical, Automation and Mechanical Engineering (EAME 2018), June 2018. – Atlantis press, 2018. – P. 273–276. – doi: 10.2991/eame-18.2018.57.
  26. Singh P.K., Hota A.R., Mishra S.B. Finite element modelling of erosion parameters in Bing boiler components // Asian Journal of Engineering and Applied Technology. – 2018. – Vol. 7 (2). – P. 12–16. – doi: 10.51983/ajeat-2018.7.2.964.
  27. Modeling, simulation, and analysis of the impact(s) of single angular-type particles on ductile surfaces using smoothed particle hydrodynamics / X. Dong, Z. Li, L. Feng, Z. Sun, C. Fan // Powder Technology. – 2017. – Vol. 318. – P. 363–382. – doi: 10.1016/j.powtec.2017.06.011.
  28. FVPM numerical simulation of the effect of particle shape and elasticity on impact erosion / S. Leguizamón, E. Jahanbakhsh, S. Alimirzazadeh, A. Maertens, F. Avellan // Wear. – 2019. – Vol. 430–431. – P. 108–119. – doi: 10.1016/j.wear.2019.04.023.
  29. Menter F., Lechner R., Matyushenko A. Best practice: generalized K-Ω two-equation turbulence model in ANSYS CFD (GEKO): Technical Report ANSYS. – Nurnberg, Germany, 2019. – 32 p.
  30. ANSYS Fluent Theory Guide. – Canonsburg, PA: ANSYS Inc, 2019. – 1080 p.
  31. Menter F., Matyushenko A., Lechner R. Development of a generalized K-ω two-equation turbulence model // Notes on Numerical Fluid Mechanics and Multidisciplinary Design. – 2018. – Vol. 142. – P. 101–109. – doi: 10.1007/978-3-030-25253-3_10.
  32. Simulation of a GOx-gch4 rocket combustor and the effect of the GEKO turbulence model coefficients / E. Strokach, V. Zhukov, I. Borovik, A. Sternin, O.J. Haidn // Aerospace. – 2021. – Vol. 8 (11). – P. 341. – doi: 10.3390/aerospace8110341.
  33. Pozhidaev A., Kozhevnikov G., Strokach E. Numerical study of turbulence model effect on solid particle erosion in gaseous flow // AIP Conference Proceedings. – 2023. – Vol. 2549 (1). – P. 030003. – doi: 10.1063/5.0130489.
  34. The impact angle dependence of erosion damage caused by solid particle impact / Y.I. Oka, H. Ohnogi, T. Hosokawa, M. Matsumura // Wear. – 1997. – Vol. 203–204. – P. 573–579. – doi: 10.1016/s0043-1648(96)07430-3.
  35. Sand erosion of wear resistant materials: Erosion in choke valves / K. Haugen, O. Kvernvold, A. Ronold, R. Sandberg // Wear. – 1995. – Vol. 186–187. – P. 179–188. – doi: 10.1016/0043-1648(95)07158-X.
  36. The role of inter-particle collisions on elbow erosion / C.A. Duarte Ribeiro, F. Souza, R. Salvo, V. Santos // International Journal of Multiphase Flow. – 2016. – Vol. 89. – P. 1–22. – doi: 10.1016/j.ijmultiphaseflow.2016.10.001.
  37. Recommended practice RP O501 Erosive wear in piping systems. Revision 4.2-2007 (DNV RP O501 – Revision 4.2-2007). – Det Norske Veritas, 2007. – 43 p.
  38. Haider A., Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles // Powder Technology. – 1989. – Vol. 58 (1). – P. 63–70. – doi: 10.1016/0032-5910(89)80008-7.
  39. Morsi S.A., Alexander A.J. An investigation of particle trajectories in two-phase flow systems // Journal of Fluid Mechanics. – 1972. – Vol. 55, pt. 2. – P. 193–208. – doi: 10.1017/s0022112072001806.
  40. ImageJ. Image Processing and Analysis in Java. – URL: https://imagej.net/ij/index.html (accessed: 31.10.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».