Comparative study of cavitation erosion resistance of austenitic steels with different levels of metastability
- Authors: Korobov Y.S.1, Alwan H.L.1, Makarov A.V.1, Kukareko V.A.1, Sirosh V.A.1, Filippov M.A.1, Estemirova S.K.1
-
Affiliations:
- Issue: Vol 24, No 1 (2022)
- Pages: 61-72
- Section: MATERIAL SCIENCE
- URL: https://journal-vniispk.ru/1994-6309/article/view/301770
- DOI: https://doi.org/10.17212/1994-6309-2022-24.1-61-72
- ID: 301770
Cite item
Abstract
About the authors
Y. S. Korobov
Email: yukorobov@gmail.com
D.Sc. (Engineering); M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskoy str., Ekaterinburg, 620108, Russian Federation; yukorobov@gmail.com
H. L. Alwan
Email: lefta.hussam@gmail.com
Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg, 620002, Russian Federation; lefta.hussam@gmail.com
A. V. Makarov
Email: av-mak@yandex.ru
D.Sc. (Engineering); M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskoy str., Ekaterinburg, 620108, Russian Federation; av-mak@yandex.ru
V. A. Kukareko
Email: v_kukareko@mail.ru
D.Sc. (Physics and Mathematics), Professor; The Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, 12 Akademicheskaya str., Minsk, 220072, Republic of Belarus; v_kukareko@mail.ru
V. A. Sirosh
Email: sirosh.imp@yandex.ru
Ph.D. (Physics and Mathematics); M.N. Miheev Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskoy str., Ekaterinburg, 620108, Russian Federation; sirosh.imp@yandex.ru
M. A. Filippov
Email: michael.alex.filippov@yandex.ru
D.Sc. (Engineering), Professor; Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Ekaterinburg, 620002, Russian Federation; michael.alex.filippov@yandex.ru
S. Kh. Estemirova
Email: esveta100@mail.ru
Ph.D. (Chemical); Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 101 Amundsen str., Ekaterinburg, 620016, Russian Federation; esveta100@mail.ru
References
- Богачев И.Н. Кавитационное разрушение и кавитационностойкие сплавы. – М.: Металлургия, 1972. – 192 с.
- Singh R., Tiwari S.K., Mishra S.K. Cavitation erosion in hydraulic turbine components and mitigation by coatings: current status and future needs // Journal of Materials Engineering and Performance. – 2012. – Vol. 21. – P. 1539–1551. – doi: 10.1007/s11665-011-0051-9.
- Adamkowski A., Henke A., Lewandowski M. Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers // Engineering Failure Analysis. – 2016. – Vol. 70. – P. 56–72. – doi: 10.1016/j.engfailanal.2016.07.011.
- Горбаченко Е.О. Оценка долговечности металлических материалов и судового оборудования при кавитационном изнашивании методом профилометрии: дис. … канд. техн. наук. – СПб., 2019. – 150 с.
- Сопротивление эрозионно-коррозионному кавитационному воздействию WC–CoCr- и WC–NiCr-покрытий, полученных методом HVAF / Ю.С. Коробов, Х.Л. Алван, М. Барбоза, Н.В. Лежнин, Н.Н. Соболева, А.В. Макаров, М.С. Девятьяров, А.Ю. Давыдов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2019. – Т. 21, № 1. – С. 20–27. – doi: 10.15593/2224-9877/2019.1.03.
- Vyas B., Preece C. Cavitation erosion of face centered cubic metals // Metallurgical and Materials Transactions A. – 1977. – Vol. 8. – P. 915–923. – doi: 10.1007/BF02661573.
- Brujan E.A., Ikedab T., Matsumoto Y. Shock wave emission from a cloud of bubbles // Soft Matter. – 2012. – Vol. 8, iss. 21. – P. 5777–5783. – doi: 10.1039/C2SM25379H.
- Lauterborn W., Bolle H. Experimental investigation of cavitation bubble collapse in the neighborhood of a solid boundary // Journal of Fluid Mechanics. – 1975. – Vol. 72. – P. 391–399. – doi: 10.1017/S0022112075003448.
- Plesset M.S., Chapman R.B. Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary // Journal of Fluid Mechanics. – 1971. – Vol. 47. – P. 283–290. – doi: 10.1017/S0022112071001058.
- Relationship between cavitation structures and cavitation damage / M. Dular, B. Bachert, B. Stoffel, B. Širok // Wear. – 2004. – Vol. 257. – P. 1176–11841. – doi: 10.1016/j.wear.2004.08.004.
- Vyas B., Preece C. Stress produced in a solid by cavitation // Journal of Applied Physics. – 1976. – Vol. 47. – P. 5133–5138. – doi: 10.1063/1.322584.
- Pohl M., Stella J., Hessing C. Comparative study on CuZnAl and CuMnZnAlNiFe shape memory alloys subjected to cavitation-erosion // Advanced Engineering Materials. – 2003. – Vol. 5. – P. 251–256. – doi: 10.1002/adem.200300341.
- Espitia L.A., Toro A. Cavitation resistance, microstructure and surface topography of materials used for hydraulic components // Tribology International. – 2010. – Vol. 43. – P. 2037–2045. – doi: 10.1016/j.triboint.2010.05.009.
- Chiu K.Y., Cheng F.T., Man H.C. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi // Materials Science and Engineering: A. – 2005. – Vol. 392. – P. 348–358. – doi: 10.1016/j.msea.2004.09.035.
- Residual stress and microstructure evolutions of SAF 2507 duplex stainless steel after shot peening / M. Chen, H. Liu, L. Wang, Z. Xu, V. Ji, C. Jiang // Applied Surface Science. – 2018. – Vol. 459. – P. 155–163. – doi: 10.1016/j.apsusc.2018.07.182.
- Park I.-C., Kim S.-J. Effect of pH of the sulfuric acid bath on cavitation erosion behavior in natural seawater of electroless nickel plating coating // Applied Surface Science. – 2019. – Vol. 483. – P. 194–204. – doi: 10.1016/j.apsusc.2019.03.277.
- Cavitation erosion-corrosion resistance of deposited austenitic stainless steel/E308L-17 electrode / H.L. Alwan, Yu.S. Korobov, N.N. Soboleva, N.V. Lezhnin, A.V. Makarov, E.P. Nikolaeva, M.S. Deviatiarov // Solid State Phenomena. – 2020. – Vol. 299. – P. 908–913. – doi: 10.4028/ href='www.scientific.net/SSP.299.908' target='_blank'>www.scientific.net/SSP.299.908.
- Gualco A., Svoboda H.G., Surian E.S. Effect of welding parameters on microstructure of Fe-based nanostructured weld overlay deposited through FCAW-S // Welding International. – 2016. – Vol. 30. – P. 573–580. – DOI: 10.1080/ 09507116.2015.1096533.
- Sreedhar B.K., Albert S.K., Pandit A.B. Improving cavitation erosion resistance of austenitic stainless steel in liquid sodium by hardfacing – comparison of Ni and Co based deposits // Wear. – 2015. – Vol. 342–343. – P. 92–99. – doi: 10.1016/j.wear.2015.08.009.
- Abrasion, erosion and cavitation erosion wear properties of thermally sprayed alumina based coatings / V. Matikainen, K. Niemi, H. Koivuluoto, P. Vuoristo // Coatings. – 2014. – Vol. 4. – P. 18–36. – doi: 10.3390/coatings4010018.
- Effect of spray particle velocity on cavitation erosion resistance characteristics of HVOF and HVAF processed 86WC-10Co4Cr hydro turbine coatings / R.K. Kumar, M. Kamaraj, S. Seetharamu, T. Pramod, P. Sampathkumaran // Journal of Thermal Spray Technology. – 2016. – Vol. 25. – P. 1217–1230. – doi: 10.1007/s11666-016-0427-3.
- Solidified microstructure of wear-resistant Fe-Cr-C-B overlays / J. Li, R. Kannan, M. Shi, L. Li // Metallurgical and Materials Transactions B. – 2020. – Vol. 51. – P. 1291–1300. – doi: 10.1007/s11663-020-01863-3.
- Tôn-Thât L. Experimental comparison of cavitation erosion rates of different steels used in hydraulic turbines // IOP Conference Series: Earth and Environmental Science. – 2010. – Vol. 12. – P. 1–9. – doi: 10.1088/1755-1315/12/1/012052.
- Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note / A. Kumar, J. Boy, R. Zatorski, L.D. Stephenson // Journal of Thermal Spray Technology. – 2005. – Vol. 14. – P. 177–182. – doi: 10.1361/10599630523737.
- Филиппов М.А., Филиппенков А.А., Плотников Г.Н. Износостойкие стали для отливок. – Екатеринбург: УГТУ-УПИ, 2009. – 358 с. – ISBN 978-5-321-01473-8.
- Heathcock C.J., Protheroe B.E., Ball A. Cavitation erosion of stainless steels // Wear. – 1982. – Vol. 81. – P. 311–327. – doi: 10.1016/0043-1648(82)90278-2.
- Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion / L.M. Zhang, Z.X. Li, J.X. Hu, A.L. Ma, S. Zhang, E.F. Daniel, A.J. Umoh, H.X. Hu, Y.G. Zheng // Tribology International. – 2021. – Vol. 155. – P. 106752. – doi: 10.1016/j.triboint.2020.106752.
- Лободюк В.А., Эстрин Э.И. Мартенситные превращения. – М.: Физматлит, 2009. – 350 с. – ISBN 978-5-9221-1018-1.
- Structural features of welded joint of medium-carbon chromium steel containing metastable austenite / Yu.S. Korobov, O.V. Pimenova, M.A. Filippov, M.S. Khadyev, N.N. Ozerets, S.B. Mikhailov, S.O. Morozov, Yu.S. Davydov, N.M. Razikov // Inorganic Materials: Applied Research. – 2020. – Vol. 11. – P. 132–139. – doi: 10.1134/S2075113320010220.
- An influence of strain-induced nucleation of martensitic transformations on tribological properties of sprayed and surfaced depositions / Yu. Korobov, V. Verkhorubov, S. Nevezhin, M. Filippov, G.A. Tkachuk, A. Makarov, I. Zabolotskikh // International Thermal Spray Conference and Exposition ITSC. – Shanghai, China, 2016. – P. 694–699.
- G 32-10. Standard test method for cavitation erosion using vibratory apparatus. – ASTM, 2011. – 20 p. – (Annual Book of ASTM Standards).
- Патент № 2710480 Российская Федерация. Установка для испытания на кавитационную эрозию: № 2018130210: заявл. 20.08.2018: опубл. 26.12.2019, Бюл. № 36 / В.И. Шумяков, Ю.С. Коробов, Х.Л. Алван, Н.В. Лежнин, А.В. Макаров, М.С. Девятьяров. – 9 с.
- Enhanced cavitation erosion–corrosion resistance of high-velocity oxy-fuel-sprayed Ni-Cr-Al2O3 coatings through stationary friction processing / H.S. Arora, M. Rani, G. Perumal, H. Singh, H.S. Grewal // Journal of Thermal Spray Technology. – 2020. – Vol. 29. – P. 1183–1194. – doi: 10.1007/s11666-020-01050-5.
- Цветков Ю.Н., Горбаченко Е.О. Испытания сталей на кавитационное изнашивание с применением метода измерения профиля поверхности // Заводская лаборатория. Диагностика материалов. – 2017. – Т. 83, № 7. – С. 54–58.
- Lipold J.C., Kotecki D.J. Welding metallurgy and weldability of stainless steels. – Hoboken, NJ: Wiley, 2005. – 357 p. – ISBN 0-471-47379-0.
- Сварка и свариваемые материалы. В 3 т. Т. 1. Свариваемость материалов / под ред. Э.Л. Макарова. – М.: Металлургия, 1991. – 528 с. – ISBN 5-229-00816-4.
- Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion / L.M. Zhang, Z.X. Li, J.X. Hu, A.L. Ma, S. Zhang, E.F. Daniel, A.J. Umoh, H.X. Hu, Y.G. Zheng // Tribology International. – 2021. – Vol. 155. – P. 106752. – doi: 10.1016/j.triboint.2020.106752.
- Santos L.L., Cardoso R.P., Brunatto S.F. Direct correlation between martensitic transformation and incubation-acceleration transition in solution-treated AISI 304 austenitic stainless steel cavitation // Wear. – 2020. – Vol. 462–463. – P. 203522. – doi: 10.1016/j.wear.2020.203522.
Supplementary files
