Theoretical simulation of the process interelectrode space flushing during copy-piercing EDM of products made of polymer composite materials

Cover Page

Cite item

Abstract

Introduction. Polymer composite materials (PCM) are used to improve the mechanical properties and increase the working period of products. For the processing of products made of PCM, the use of electrophysical processing methods is standard. One of these methods is copy-piercing electrical discharge machining (EDM). The use of such methods for processing PCM is due to its high physical and mechanical characteristics and the complexity of processing by blade methods. Considering the fact that the PCM element is a binder – epoxy resin, which is destroyed at the edges of the resulting holes and grooves during EDM, PCM can be considered difficult to process. During the EDM of holes in PCM products, the temperature rises, and inefficient cooling often occurs in the processing zone. The paper is devoted to theoretical simulation in the Ansys package, which makes it possible to evaluate the impact of flushing method on the efficiency of the EDM of PCM products based on numerical simulation in finite element analysis software systems. The aim of the work is to increase the productivity of the processes of EDM for PCM products. Methods. Experimental studies were carried out according to the method of a classical experiment on a copy-piercing electrical discharge Smart CNC machine. The workpiece was processed at a constant voltage U = 50 V, pulse on-time Ton = 100 µs and current: I = 10 A. For theoretical simulation of the flow, the ANSYS CFX 20.1 software was used. Flow distribution simulation was carried out at three processing depths (2 mm, 10 mm, 15 mm), as well as at three nozzle inclination angles (15°, 45°, 75°). Results And Discussion. The analysis of the data obtained showed that in the case of the EDM of PCM, the angle of the location of the flushing nozzles should be taken into account in order to increase the productivity of processing deep, blind holes. It is established that the highest performance value is achieved when the nozzles are located at an angle of 15?. The laminar motion prevails. With this arrangement of the nozzles, the value of the liquid pressure and the removal of the sludge are stable both with the EDM of PCM to a depth of 2 mm, and when processing to a depth of 15 mm. It is noted that for processing holes with a depth of 10 mm or more, it is worth considering the angle of inclination of the flushing nozzle for effective processing, it is necessary to remove eroded particles from the gap. In the process of conducting an experimental study, when processing holes with a depth of 15 mm, sticking of sludge to the electrode-tool was observed, as well as the closure of the EDM process, the occurrence of secondary discharges in the processing zone, which caused the processing to stop.

About the authors

E. S. Shlykov

Email: Kruspert@mail.ru
Ph.D. (Engineering), Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, Kruspert@mail.ru

T. R. Ablyaz

Email: lowrider11-13-11@mail.ru
Ph.D. (Engineering), Associate Professor, Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, lowrider11-13-11@mail.ru

K. R. Muratov

Email: Karimur_80@mail.ru
D.Sc. (Engineering), Associate Professor, Perm National Research Polytechnic University, 29 Komsomolsky prospekt, Perm, 614990, Russian Federation, Karimur_80@mail.ru

References

  1. Sarde B., Patil Y.D. Recent research status on polymer composite used in concrete – An overview // Materials Today Proceedings. – 2019. – Vol. 18. – P. 3780–3790. – doi: 10.1016/j.matpr.2019.07.316.
  2. Mechanical performance of woven kenaf-Kevlar hybrid composites / R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin // Journal of Reinforced Plastics and Composites. – 2014. – Vol. 33 (24). – P. 2242–2254. – doi: 10.1177/0731684414559864.
  3. Thomason J. A review of the analysis and characterisation of polymeric glass fibre sizings // Polymer Testing. – 2020. – Vol. 85. – P. 106421. – doi: 10.1016/j.polymertesting.2020.106421.
  4. Shlykov E.S., Ablyaz T.R., Oglezneva S.A. Electrical discharge machining of polymer composites // Russian Engineering Research. – 2020. – Vol. 40. – P. 878–879. – doi: 10.3103/S1068798X20100275.
  5. Electric-discharge machining of polymer composites / T.R. Ablyaz, K.R. Muratov, E.S. Shlykov, G.S. Shipunov, T.V. Shakirzyanov // Russian Engineering Research. – 2019. – Vol. 39. – P. 898–900. – doi: 10.3103/S1068798X19100058.
  6. Analysis of wire-cut electro discharge machining of polymer composite materials / T.R. Ablyaz, E.S. Shlykov, K.R. Muratov, S.S. Sidhu // Micromachines. – 2021. – Vol. 12 (5). – P. 571. – doi: 10.3390/mi12050571.
  7. Yilmaz O., Okka M.A. Effect of single and multi-channel electrodes application on EDM fast hole drilling performance // The International Journal of Advanced Manufacturing Technology. – 2010. – Vol. 51. – P. 185–194. – doi: 10.1007/s00170-010-2625-3.
  8. Bozdana A.T., Ulutas T. The effectiveness of multichannel electrodes on drilling blind holes on Inconel 718 by EDM process // Materials and Manufacturing Processes. – 2016. – Vol. 31. – P. 504–513. – doi: 10.1080/10426914.2015.1059451.
  9. Haas P., Pontelandolfo P., Perez R. Particle hydrodynamics of the electrical discharge machining process. Pt. 1: Physical considerations and wire EDM process improvement // Procedia CIRP. – 2013. – Vol. 6. – P. 41–46. – doi: 10.1016/j.procir.2013.03.006.
  10. Computational fluid dynamics analysis of working fluid flow and debris movement in wire EDMed kerf / A. Okada, Y. Uno, S. Onoda, S. Habib // CIRP Annals – Manufacturing Technology. – 2009. – Vol. 58. – P. 209–212. – doi: 10.1016/j.cirp.2009.03.003.
  11. Takino H., Han F. Cutting of polished single-crystal silicon by wire electrical discharge machining using anti-electrolysis pulse generator // Proceedings of the 14th International Conference of the European Society for Precision Engineering and Nanotechnology. – Dubrovnik, Croatia, 2014. – Vol. 2. – P. 59–62.
  12. Wang J., Han F. Simulation model of debris and bubble movement in consecutive-pulse discharge of electrical discharge machining // International Journal of Machine Tools and Manufacture. – 2014. – Vol. 77. – P. 56–65. – doi: 10.1016/j.ijmachtools.2013.10.007
  13. Schumacher B.M. About the role of debris in the gap during electrical discharge machining // CIRP Annals – Manufacturing Technology. – 1990. – Vol. 39. – P. 197–199. – doi: 10.1016/S0007-8506(07)61034-8.
  14. Su J.C., Kao J.Y., Tang Y.S. Optimisation of the electrical discharge machining process using a GA-based neural network // International Journal of Advanced Manufacturing Technology. – 2004. – Vol. 24. – P. 81–90. – doi: 10.1007/s00170-003-1729-4.
  15. Investigation of the scaling effects in meso-micro EDM / U. Maradia, K. Wegener, J. Stirnimann, R. Knaak, M. Boccadoro // ASME 2013 International Mechanical Engineering Congress and Exposition. – San Diego, 2013. – Vol. 2B. – P. 63160. – doi: 10.1115/IMECE2013-63160.
  16. A new electrode sidewall insulation method in electrochemical drilling / J. Wang, W. Chen, F. Gao, F. Han // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 75. – P. 21–32. – doi: 10.1007/s00170-014-6131-x.
  17. Numerical simulation of liquid-solid two-phase flow field in discharge gap of high-speed small hole EDM drilling / Y.Q. Wang, M.R. Cao, S.Q. Yang, W.H. Li // Advanced Materials Research. – 2008. – Vol. 53–54. – P. 409–414. – doi: 10.4028/ href='www.scientific.net/AMR.53-54.409' target='_blank'>www.scientific.net/AMR.53-54.409.
  18. Kliuev M., Baumgart C., Wegener K. Fluid dynamics in electrode flushing channel and electrode-workpiece gap during EDM drilling // Procedia CIRP. – 2018. – Vol. 68. – P. 254–259. – doi: 10.1016/j.procir.2017.12.058.
  19. Ablyaz T.R., Shlykov E.S., Muratov K.R. Improving the efficiency of electrical discharge machining of special-purpose products with composite electrode tools // Materials. – 2021. – Vol. 14. – P. 6105. – doi: 10.3390/ma14206105.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».