Comparison of approaches based on the Williamson-Hall method for analyzing the structure of an Al0.3CoCrFeNi high-entropy alloy after cold deformation

Cover Page

Cite item

Abstract

Introduction. High-entropy alloys (HEAs) belong to a new and promising class of materials that are attracting the attention of both scientists and engineers from all over the world. Among all alloys of the AlxCoCrFeNi system, HEAs with x ≤ 0.3 attract special attention. Materials with this composition are characterized by the presence of only one phase with a face-centered cubic lattice (FCC). Such alloys have high ductility, excellent corrosion resistance and phase stability at high temperatures. The purpose of this work is to compare several methods of profile analysis on the example of plastically deformed ingots of a high-entropy Al0.3CoCrFeNi alloy. The methods of investigation. Using several methods of profile analysis of X-ray diffraction patterns, the structures of the cold-worked high-entropy alloy Al0.3CoCrFeNi are studied. In addition to the classical Williamson-Hall method, the analysis was carried out using a modified one, as well as a method that takes into account the anisotropy of the elastic properties of the crystal lattice. Research material. Ingots of the high-entropy Al0.3CoCrFeNi alloy deformed by cold rolling with a maximum reduction ratio of 80% were used as the object of the study. Samples were cut from the obtained blanks, which were studied by the method of synchrotron radiation diffraction according to the “transmission” scheme along two (longitudinal (RD) and transverse (TD)) directions of rolled products. Results and discussion. It is shown that the use of the classical Williamson-Hall method leads to a significant error in the approximation of experimental results. The modified Williamson-Hall method has the smallest approximation error and can be recommended for studying the Al0.3CoCrFeNi alloy. An analysis of deformed samples using this method made it possible to reveal several features of the formation of defects in the crystalline structure, which are in good agreement with the classical concepts of the mechanisms of plastic deformation. First, an increase in the degree of deformation of the high-entropy Al0.3CoCrFeNi alloy leads to an almost uniform increase in the number of twins and stacking faults. Secondly, with an increase in the degree of reduction, there is a decrease in the fraction of edge dislocations and an increase in the fraction of screw dislocations in the material. The results obtained correlate well with the results of microhardness measurements.

About the authors

I. V. Ivanov

Email: i.ivanov@corp.nstu.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, i.ivanov@corp.nstu.ru

D. E. Safarova

Email: safarova10ab@mail.ru
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, safarova10ab@mail.ru

Z. B. Bataeva

Email: bataevazb@ngs.ru
Ph.D. (Engineering), Associate Professor, Siberian State University of water transport, 33 Schetinkina str., Novosibirsk, 630099, Russian Federation, bataevazb@ngs.ru

I. A. Bataev

Email: i.bataev@corp.nstu.ru
D.Sc. (Engineering), Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, i.bataev@corp.nstu.ru

References

  1. Обзор исследований сплавов, разработанных на основе энтропийного подхода / З.Б. Батаева, А.А. Руктуев, И.В. Иванов, А.Б. Юргин, И.А. Батаев // Обработка металлов (технология, оборудование, инструменты). – 2021. – Т. 23, № 2. – С. 116–146. – doi: 10.17212/1994-6309-2021-23.2-116-146.
  2. High-pressure induced phase transitions in high-entropy alloys: a review / F. Zhang, H. Lou, B. Cheng, Z. Zeng, Q. Zeng // Entropy. – 2019. – Vol. 21 (3). – doi: 10.3390/e21030239.
  3. Wang W.R., Wang W.L., Yeh J.W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures // Journal of Alloys and Compounds. – 2014. – Vol. 589. – P. 143–152. – doi: 10.1016/j.jallcom.2013.11.084.
  4. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys / W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh // Intermetallics. – 2012. – Vol. 26. – P. 44–51. – doi: 10.1016/j.intermet.2012.03.005.
  5. Structure and properties of high-entropy alloys / V.E. Gromov, S.V. Konovalov, Yu.F. Ivanov, K.A. Osintsev. – Berlin: Springer, 2021. – 110 p. – (Advanced Structured Materials; vol. 107).
  6. Hardening of an Al0.3CoCrFeNi high entropy alloy via high-pressure torsion and thermal annealing / Q.H. Tang, Y. Huang, Y.Y. Huang, X.Z. Liao, T.G. Langdon, P.Q. Dai // Materials Letters. – 2015. – Vol. 151. – P. 126–129. – doi: 10.1016/j.matlet.2015.03.066.
  7. Sourav A., Yebaji S., Thangaraju S. Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys // Materials Science and Engineering A. – 2020. – Vol. 793. – P. 139–877. – doi: 10.1016/j.msea.2020.139877.
  8. The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys / Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L. Sun // Metals. – 2017. – Vol. 7 (2). – doi: 10.3390/met7020057.
  9. The effects of annealing at different temperatures on microstructure and mechanical properties of cold-rolled Al0.3CoCrFeNi high-entropy alloy / Z. Zhu, T. Yang, R. Shi, X. Quan, J. Zhang, R. Qiu, B. Song, Q. Liu // Metals. – 2021. – Vol. 11 (6). – doi: 10.3390/met11060940.
  10. The fast azimuthal integration Python library: pyFAI / G.,  Ashiotis, A. Deschildre, Z. Nawaz, J.P. Wright, D. Karkoulis, F.E. Picca, J. Kieffer // Journal of Applied Crystallography. – 2015. – Vol. 48 (2). – P. 510–519.
  11. Forouzanmehr N., Nili M., Bönisch M. The analysis of severely deformed pure Fe structure aided by X-ray diffraction profile // The Physics of Metals and Metallography. – 2016. – Vol. 117 (6). – P. 624–633. – doi: 10.1134/S0031918X16060077.
  12. Dislocation structure in different texture components determined by neutron diffraction line profile analysis in a highly textured Zircaloy-2 rolled plate / T. Ungár, T.M. Holden, B. Jóni, B. Clausen, L. Balogh, G. Csiszár, D.W. Brown // Journal of Applied Crystallography. – 2015. – Vol. 48. – P. 409–417. – doi: 10.1107/S160057671500133.
  13. Gubicza J. X-ray line profile analysis in materials science. – Hershey, PA: Engineering Science Reference, an imprint of IGI global, 2014. – 343 p.
  14. Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis / T. Ungár, S. Ott, P.G. Sanders, A. Borbély, J.R. Weertman // Acta Materialia. – 1998. – Vol. 46, N 10. – P. 3693–3699.
  15. Application of different diffraction peak profile analysis methods to study the structure evolution of cold-rolled hexagonal α-titanium / I.V. Ivanov, D.V. Lazurenko, A. Stark, F. Pyczak, A. Thömmes, I.A. Bataev // Metals and Materials International. – 2020. – Vol. 26 (1). – P. 83–93. – doi: 10.1007/s12540-019-00309-z.
  16. The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice / T. Ungár, I. Dragomir, Á. Révész, A. Borbély // Journal of Applied Crystallography. – 1999. – Vol. 32 (5). – P. 992–1002.
  17. Ungár T., Borbély A. The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis // Applied Physics Letters. – 1996. – Vol. 69 (21). – P. 3173–3175.
  18. Dragomir I.C., Ungár T. Contrast factors of dislocations in the hexagonal crystal system // Journal of Applied Crystallography. – 2002. – Vol. 35 (5). – P. 556–564.
  19. Ungár T. Dislocation model of strain anisotropy // Powder Diffraction. – 2008. – Vol. 23 (2). – P. 125–132. – doi: 10.1154/1.2918549.
  20. Effects of solute concentration on the stacking fault energy in copper alloys at finite temperatures / Q.Q. Shao, L.H. Liu, T.W. Fan, D.W. Yuan, J.H. Chen // Journal of Alloys and Compounds. – 2017. – Vol. 726. – P. 601–607.
  21. Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl0.36 high entropy alloy / P. Yu, R. Feng, J. Du, S. Shinzato, J.P. Chou, B. Chen, Y.C. Lo, P.K. Liaw, S. Ogata, A. Hu // Acta Materialia. – 2019. – Vol. 181. – P. 491–500. – doi: 10.1016/j.actamat.2019.10.012.
  22. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure / Z. Li, S. Zhao, H. Diao, P.K. Liaw, M.A. Meyers // Scientific Reports. – 2017. – Art. 42742. – P. 1–8. – doi: 10.1038/srep42742.
  23. Schafler E., Zehetbauer M., Ungàr T. Measurement of screw and edge dislocation density by means of X-ray Bragg profile analysis // Materials Science and Engineering A. – 2001. – Vol. 321. – P. 220–223. – doi: 10.1016/S0921-5093(01)00979-0.
  24. X-ray diffraction study on the microstructure of an Al-Mg-Sc-Zr alloy deformed by high-pressure torsion / D. Fátay, E. Bastarash, K. Nyilas, S. Dobatkin, J. Gubicza, T. Ungár // Zeitschrift Fuer Metallkunde/Materials Research and Advanced Techniques. – 2003. – Vol. 94 (7). – P. 842–847. – doi: 10.3139/146.030842.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).