Features of structure formation processes in AA2024 alloy joints formed by the friction stir welding with bobbin tool

Abstract

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.

About the authors

A. N. Ivanov

Email: ivan@ispms.ru
Ph.D. (Engineering), 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, ivan@ispms.ru

V. E. Rubtsov

Email: rvy@ispms.ru
Ph.D. (Physics and Mathematics), 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, rvy@ispms.ru

A. V. Chumaevskii

Email: tch7av@gmail.com
Ph.D. (Engineering), Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation, tch7av@gmail.com

K. S. Osipovich

Email: osipovich_k@ispms.tsc.ru
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation, osipovich_k@ispms.tsc.ru

E. A. Kolubaev

Email: eak@ispms.ru
Doctor of Technical Sciences, 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, eak@ispms.ru

V. A. Bakshaev

Email: bakshaevva@mail.ru
SESPEL Cheboksary enterprise, CJSC, 36 Leningradskaya st., Cheboksary, 428021, Chuvash Republic, Russian Federation, bakshaevva@mail.ru

I. N. Ivashkin

Email: ivashkin_in@mail.ru
SESPEL Cheboksary enterprise, CJSC, 36 Leningradskaya st., Cheboksary, 428021, Chuvash Republic, Russian Federation, ivashkin_in@mail.ru

References

  1. The use of bobbin tools for friction stir welding of aluminium alloys / P.L. Threadgill, M.M.Z. Ahmed, J.P. Martin, J.G. Perrett, B.P. Wynne // Materials Science Forum. – 2010. – Vol. 638–642. – P. 1179–1184. – doi: 10.4028/ href='www.scientific.net/MSF.638-642.1179' target='_blank'>www.scientific.net/MSF.638-642.1179.
  2. Fuse K., Badheka V. Bobbin tool friction stir welding: a review // Science and Technology of Welding and Joining. – 2019. – Vol. 24 (4). – P. 277–304. – doi: 10.1080/13621718.2018.1553655.
  3. Microstructural characteristics and mechanical properties of friction stir welded thick 5083 aluminum alloy / M. Imam, Y. Sun, H. Fujii, N. Ma, S. Tsutsumi, H. Murakawa // Metallurgical and Materials Transactions A. – 2017. – Vol. 48. – P. 208–229. – doi: 10.1007/s11661-016-3819-6.
  4. Simulation on the temperature field of bobbin tool friction stir welding of AA 2014 aluminium alloy / X.M. Liu, J.S. Yao, Y. Cai, H. Meng, Z.D. Zou // Applied Mechanics and Materials. – 2013. – Vol. 433–435. – P. 2091–2095. – doi: 10.4028/ href='www.scientific.net/AMM.433-435.2091' target='_blank'>www.scientific.net/AMM.433-435.2091.
  5. A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates / C. Yang, D.R. Ni, P. Xue, B.L. Xiao, W. Wang, K.S. Wang, Z.Y. Ma // Materials Characterization. – 2018. – Vol. 145. – P. 20–28. – doi: 10.1016/j.matchar.2018.08.027.
  6. Bobbin and conventional friction stir welding of thick extruded AA6005-T6 profiles / M. Esmaily, N. Mortazavi, W. Osikowicz, H. Hindsefelt, J.E. Svensson, M. Halvarsson, J. Martin, L.G. Johansson // Materials and Design. – 2016. – Vol. 108. – P. 114–125. – doi: 10.1016/j.matdes.2016.06.089.
  7. Semi-stationary shoulder bobbin tool friction stir welding of AA2198-T851 / J. Goebel, M. Reimann, A. Norma, J.F. Dos Santos // Journal of Materials Processing Technology. – 2017. – Vol. 245. – P. 37–45. – doi: 10.1016/j.jmatprotec.2017.02.011.
  8. Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate / W. Xu, Y. Luo, W. Zhang, M. Fu // Journal of Materials Science and Technology. – 2018. – Vol. 34. – P. 173–184. – doi: 10.1016/j.jmst.2017.05.015.
  9. Experimental investigation of fatigue properties of FSW in AA2024-T351 / M. Milcic, Z. Burzic, I. Radisavljevic, T. Vuherer, D. Milcic, V. Grabulov // Procedia Structural Integrity. – 2018. – Vol. 13. – P. 1977–1984. – doi: 10.1016/j.prostr.2018.12.220.
  10. Ultrasonic assisted second phase transformations under severe plastic deformation in friction stir welding of AA2024 / A.A. Eliseev, T.A. Kalashnikova, D.A. Gurianov, V.E. Rubtsov, A.N. Ivanov, E.A. Kolubaev // Materials Today Communications. – 2019. – Vol. 21. – P. 100660. – doi: 10.1016/j.mtcomm.2019.100660.
  11. Microstructural characteristics and mechanical properties of bobbin-tool friction stir welded 2024–T3 aluminum alloy / J. Dong, C. Gao, Y. Lu, J. Han, X. Jiao, Z. Zhu // International Journal of Minerals, Metallurgy, and Materials. – 2017. – Vol. 24. – P. 171–178. – doi: 10.1007/s12613-017-1392-7.
  12. Влияние режима сварки трением с перемешиванием и ее направления относительно направления прокатки сплава Д16 на структуру и свойства его сварных соединений / А.Н. Иванов, В.Е. Рубцов, Е.А. Колубаев, В.А. Бакшаев, И.Н. Ивашкин // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 4. – С. 110–123. – doi: 10.17212/1994-6309-2020-22.4-110-123.
  13. Quality improvement of bobbin tool friction stir welds in Mg-Zn-Zr alloy by adjusting tool geometry / G.H. Li, L. Zhou, S.F. Luo, F.B. Dong, N. Guo // Journal of Materials Processing Technology. – 2020. – Vol. 282. – P. 116685. – doi: 10.1016/j.jmatprotec.2020.116685.
  14. Effect of an improved pin design on weld formability and mechanical properties of adjustable-gap bobbin-tool friction stir welded Al-Cu aluminum alloy joints / D. Wu, W.Y. Li, Y.J. Gao, J. Yang, Y. Su, Q. Wen, A. Vairis // Journal of Manufacturing Processes. – 2020. – Vol. 58. – P. 1182–1188. – doi: 10.1016/j.jmapro.2020.09.015.
  15. Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum / H. Zhang, M. Wang, X. Zhang, G. Yang // Materials and Design. – 2015. – Vol. 65. – P. 559–566. – doi: 10.1016/j.matdes.2014.09.068.
  16. Macrostructure, microstructure and mechanical properties of bobbin tool friction stir welded ZK60 Mg alloy joints / G. Li, L. Zhou, J. Zhang, S. Luo, N. Guo // Journal of Materials Research and Technology. – 2020. – Vol. 9, iss. 4. – P. 9348–9361. – doi: 10.1016/j.jmrt.2020.05.067.
  17. Temperature measurement and control of bobbin tool friction stir welding / S. Chen, H. Li, S. Lu, R. Ni, J. Dong. // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 86. – P. 337–346. – doi: 10.1007/s00170-015-8116-9.
  18. Tamadon A., Pons D.J., Clucas D. Structural anatomy of tunnel void defect in bobbin friction stir welding, elucidated by the analogue modelling // Applied System Innovation. – 2020. – Vol. 3. – P. 2. – doi: 10.3390/asi3010002.
  19. Internal material flow layers in AA6082-T6 butt-joints during bobbin friction stir welding / A. Tamadon, D.J. Pons, D. Clucas, K. Sued // Metals. – 2019. – Vol. 9. – P. 1059. – doi: 10.3390/met9101059.
  20. Seidel T.U., Reynolds A.P. Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique // Metallurgical and Materials Transactions A. – 2001. – Vol. 32. – P. 2879–2884. – doi: 10.1007/s11661-001-1038-1.
  21. A finite element model to simulate defect formation during friction stir welding / Z. Zhu, M. Wang, H. Zhang, X. Zhang, T. Yu, Z. Wu // Metals. – 2017. – Vol. 7. – P. 256. – doi: 10.3390/met7070256.
  22. Formation mechanisms for entry and exit defects in bobbin friction stir welding / A. Tamadon, D.J. Pons, K. Sued, D. Clucas // Metals. – 2018. – Vol. 8. – P. 33. – doi: 10.3390/met8010033.
  23. Microstructural analysis of friction stir butt welded Al-Mg-Sc-Zr alloy heavy gauge sheets / T. Kalashnikova, A. Chumaevskii, K. Kalashnikov, S. Fortuna, E. Kolubaev, S. Tarasov // Metals. – 2020. – Vol. 10 (6). – P. 1–20. – doi: 10.3390/met10060806.
  24. Dislocation physics in the multilevel approach to plastic deformation / E.V. Kozlov, L.I. Trishkina, N.A. Popova, N.A. Koneva // Physical Mesomechanics. – 2011. – Vol. 14. – P. 283. – doi: 10.1016/j.physme.2011.12.007.
  25. Grimes R. Superplastic forming of aluminium alloys // Superplastic forming of advanced metallic materials: methods and applications / ed. by G. Giuliano. – Cambridge; Philadelphia, PA: Woodhead Publishing, 2011. – P. 247–271. – (Woodhead Publishing Series in Metals and Surface Engineering).

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».