Recycling of bismuth oxides

Cover Page

Cite item

Abstract

Introduction. The paper is devoted to the creation of an environmentally safe, technologically efficient and cost-effective high-performance integrated scheme for the recycling of lead-containing industrial products and waste, in particular, bismuth oxides and drosses formed during the melting of copper-electrolyte sludge, with the production of commodity monoelement products. To solve the problem, a combined technology is used, which is based on hydrometallurgical operations that allow separating chemical elements with similar properties with high extraction into finished products. The aim of the work is to study and develop fundamental approaches and rational integrated technologies for recycling bismuth drosses and oxides-industrial products of refining rough lead, using reducing melts of raw materials and bismuth-enriched sludge, electrolysis of bismuth lead to obtain rough bismuth containing  ≥ 90 % Bi with its direct extraction of  ≥ 70 %. Methods and approaches: melting at a temperature of 1,100…1,150 oC a charge of optimal composition containing bismuth oxides, sodium carbonate, silicon dioxide and carbon. Novelty: a decrease in the content of noble metals and accompanying chalcogenes in secondary copper-containing raw materials with an increase in the amount of impurity elements. Results and discussion: joint melting (1,100…1,150 °C) of bismuth oxides, sodium carbonate, silicon dioxide and carbon, taken in the mass ratio 100 : (15?66) : (11?25) : (5?7), allows to transfer 89.0 – 93.6 % of bismuth and 99.5 ? 99.7 % of lead from the initial oxides to bismuth lead containing ~7 % Bi and ~80 % Pb. The main phase of the Pb-Bi alloy is elemental lead. The increased flux consumption leads to an increase in the amount of recycled silicate slags that are poor in target metals, into which it passes,%: 1.4 Bi; 2 Pb; 47 Zn; 23 Sb; 33 Sn. Main slag phases are following: Na2CaSiO4, Na4Mg2Si3O10, MgO, Pb, ZnS, PbS. The practical relevance is determined by the optimal mode of reducing melting of bismuth oxides (100 %) to obtain lead bismuth, %: 66 Na2CO3, 25 SiO2, 5 C; the process temperature is 1,150 ° C. The presence of impurities makes it necessary to introduce reagent treatment of lead bismuth into the technological scheme for recycling bismuth oxides. Decontamination and alkaline softening will make it possible to obtain a Pb-Bi alloy suitable for pyroelectrometallurgical recycling.

About the authors

A. A. Korolev

Email: A.Korolev@elem.ru
Ph.D. (Engineering), JSC "Uralelektromed", 1 Prospect Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation, A.Korolev@elem.ru

S. V. Sergeichenko

Email: sesv@elem.ru
JSC "Uralelektromed", 1 Prospect Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation, sesv@elem.ru

K. L. Timofeev

Email: K.Timofeev@elem.ru
Ph.D. (Engineering), JSC "Uralelektromed", K.Timofeev@elem.ru

G. I. Maltsev

Email: mgi@elem.ru
D.Sc. (Engineering), Associate Professor, JSC "Uralelektromed", 1 Prospect Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation, mgi@elem.ru

R. S. Voinkov

Email: Voinkov@elem.ru
Ph.D. (Engineering), JSC "Uralelektromed", 1 Prospect Uspensky, Verkhnyaya Pyshma, 624091, Russian Federation, R,Voinkov@elem.ru

References

  1. Юхин Ю.М., Михайлов Ю.И. Химия висмутовых соединений и материалов. – Новосибирск: Изд-во СО РАН, 2001. – 360 с. – ISBN 5-7692-0404-4.
  2. Эмели Дж. Элементы. – М.: Мир, 1993. – 256 с. – ISBN 5-03-002422-0.
  3. Смирнов М.П. Рафинирование свинца и переработка полупродуктов. – М.: Металлургия, 1977. – 280 с.
  4. Полывянный И.Р., Абланов А.Д., Батырбекова С.А. Висмут. – Алма-Ата: Наука, 1989. – 316 с. – ISBN 5-628-00259-3.
  5. Федоров П.И. Химия и технология малых металлов. Висмут и кадмий. – М.: МИХМ, 1986. – 92 с.
  6. Mechanism of debismuthizing with calcium and magnesium / D. Lu, Z. Jin, Y. Chang, S. Sun // Transactions of Nonferrous Metals Society of China. – 2013. – Vol. 23. – P. 1501–1505. – doi: 10.1016/S1003-6326(13)62622-9.
  7. Castle J.F., Richards J.H. Lead refining: current technology and a new continuous process // Advance in Extractive Metallurgy / W.T. Denholm. – London: The Institution of Mining and Metallurgy, 1977. – P. 217−234. ISBN 0900488379.
  8. Hibbins S.G., Closset B., Bray M. Advances in the refining and alloying of low-bismuth lead // Journal of Power Sources. – 1995. – Vol. 53. – P. 75–83. – doi: 10.1016/0378-7753(94)02007-P.
  9. Betterton J.O., Lebedeff  Y. Debismuthing lead with alkaline earth metals // Transactions of AIME. – 1936. – Vol. 121. – P. 205−225.
  10. Evers D. Debismuthing by the Kroll−Betterton process // Metallhuttenw. – 1949. – Vol. 2. – P. 129−133.
  11. Davey T.R.A. Debismuthing of lead // Journal of Metals. – 1956. – Vol. 3. – P. 341−350.
  12. Iley J.D., Ward D.H. Development of a continuous process for the fine debismuthizing of lead // Advance in Extractive Metallurgy / W.T. Denholm. – London: The Institution of Mining and Metallurgy, 1977. – P. 133−139. – ISBN 0900488379.
  13. Hancock P., Harris R. Solubility of calcium−magnesium−bismuth intermetallic in molten lead // Candian Metallurgy Quarterly. – 1991. – Vol. 30. – P. 275−291.
  14. Lu D., Liu X., Ye G. Thermodynamical analysis of debismuthizing mechanism with calcium and magnesium // Journal of Shenyang Institute of Gold Technology. – 1997. – Vol. 16, iss. 2. – P. 110−115.
  15. Davey T.R.A. The physical chemistry of lead refining // Lead-Zinc-Tin'80: Proceedings of the World Symposium on Metallurgy and Environmental Control. – TMS-AIME: Metallurgical Society of AIME, 1980. – P. 477−506. – ISBN 0895203588. – ISBN 9780895203588.
  16. Lu D., Jin Z., Jiang K. Fine debismuthizing with calcium, magnesium and // Transactions of Nonferrous Metals Society of China. – 2011. – Vol. 21 (10). – P. 2311−2316. – doi: 10.1016/S1003-6326(11)61013-3.
  17. Zhang J.S. A review of steel corrosion by liquid lead and lead–bismuth // Corrosion Science. – 2009. – Vol. 51. – P. 1207−1227. – doi: 10.1016/j.corsci.2009.03.013.
  18. Manas P., Jung I.H. Thermodynamic modeling of the Mg−Bi and Mg−Sb binary systems and short-range-ordering behavior of the liquid solutions / P. Manas, I.H. Jung // Computer Coupling of Phase Diagrams and Thermochemistry. – 2009. – Vol. 33. – P. 744−754. – doi: 10.1016/j.calphad.2009.10.002.
  19. The thermodynamic properties of calcium intermetallic compounds / M. Notin, J. Mejbar, A. Bouhaijb, J. Charles, J. Hertz // Journal of Alloys and Compounds. – 1995. – Vol. 220. – P. 62−75.
  20. Extraction of tellurium and high purity bismuth from processing residue of zinc anode slime by sulfation roasting-leaching-electrodeposition process / J. Fan, G. Wang, Q. Li, H. Yang, S. Xu, J. Zhang, J. Chen, R. Wang // Hydrometallurgy. – 2020. – Vol. 194. – P. 105348. – doi: 10.1016/j.hydromet.2020.105348.
  21. Патент 2046832 Российская Федерация, МПК C 22 B 13/00, C 22 B 7/00, C 22 B 13/02. Способ гидрометаллургической переработки щелочного сульфидно-сульфатного плава от плавки свинцового концентрата / Н.В. Ходов, М.П. Смирнов, О.К. Кузнецов, К.М. Смирнов; заявитель и патентообладатель Ходов Н.В. – №  5056328/02; заявл. 14.09.1992; опубл. 27.10.1995.
  22. Патент 1192411 Российская Федерация, МПК С 25 С 3/34. Способ переработки сплавов, содержащих свинец и висмут / О.Г. Зарубицкий, С.Н. Сутурин, А.А. Омельчук, В.Т. Мелехин, Ю.С. Корюков, В.Е. Дьяков, В.Г. Будник, Т.А. Бандур, М.А. Яковлев, В.Д. Никитина; заявитель Институт общей и неорганической химии АН УССР. – № 3646660/02; заявл. 26.09.1983; опубл. 10.07.2012, Бюл. № 19.
  23. А. с. 1106162 СССР, МПК С 22 В 30/06. Способ получения висмута из его оксисоединений / Ю.М. Юхин, В.Е. Дьяков, Л.Н. Максимов, А.И. Федченко, В.В. Соболев; заявитель Институт химии твердого тела и переработки минерального сырья СО АН. – № 3611338/02; заявл. 27.06.1983; опубл. 10.11.2011, Бюл. № 31.
  24. Патент 106048224 Китайская Народная Республика, МПК С 22 В 5/02, С 22 В 30/06. Способ ведения низкотемпературной восстановительной плавки висмутсодержащих соединений / Liu Weifeng, Fu Xinxin, Deng Xunbo, et al. (CN); заявитель Central South University. – № 201610501290.7; заявл. 30.06.2016; опубл. 26.10.2016.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».