Study of the stress-strain and temperature fields in cutting tools using laser interferometry

Cover Page

Cite item

Abstract

Introduction. The efficiency of the metalworking processes highly depends on the performance of the implemented cutting tools that can be increased by studying its stress-strain state and temperature fields. Existing stress analysis methods either have a low accuracy or are inapplicable for research during the operation of the tools made of materials with high mechanical properties. In addition, the study of temperature fields using known methods is difficult due to the small size of the cutting zone, high temperatures, and a heavy temperature gradient appearing during metal cutting. The purpose of this study is to develop new experimental methods for measuring the stress-strain and temperature fields in the cutting tool during its operation using laser interferometry. The methods include: obtaining interference fringe patterns using an interferometer with the original design, obtaining the tool deformation field during the cutting process by recording the changes in interference fringe patterns using a high-speed camera, processing fringe patterns with the separation of deformations caused by heating and cutting forces, and calculating temperature fields and stress distributions using mechanical properties and the coefficient of thermal expansion of the tool material. The advantages of the developed methods include: applicability under real operating conditions of the cutting tool, ability to study the non-stationary stress-strain state and temperatures during an operation, and achievement of a high spatial resolution and a small field of view for the investigated surface. Results and Discussion. The experimental study confirmed the efficiency of the methods. The results of the study included the fields of stresses and temperatures obtained during the orthogonal cutting of heat-resistant steel with a tool made of cemented tungsten carbide WC-8Co. The developed methods can be used to study the cutting tool efficiency at close to real conditions and in obtaining boundary conditions for the study stress-strain state of a workpiece material near the cutting zone.

About the authors

I. A. Efimovich

Email: egor_kosin@mail.ru
Ph.D. (Engineering), Associate Professor, Tyumen Industrial University, 38 Volodarskogo, Tyumen, 625000, Russian Federation, egor_kosin@mail.ru

I. S. Zolotukhin

Email: zolotuhinis@tyuiu.ru
Tyumen Industrial University, 38 Volodarskogo, Tyumen, 625000, Russian Federation, zolotuhinis@tyuiu.ru

References

  1. Buryta D., Sowerby R., Yellowley I. Stress distributions on the rake face during orthogonal machining // International Journal of Machine Tools and Manufacture. ? 1994. ? Vol. 34, iss. 5. ? P. 721?739. ? doi: 10.1016/0890-6955(94)90054-X.
  2. Laakso S.V.A., Bushlya V., Ståhl J.-E. The correct way of splitting tools – Optimization of instrument design for measuring contact stress distribution // Procedia Manufacturing. ? 2018. ? Vol. 25. ? P. 97?102. ? doi: 10.1016/j.promfg.2018.06.062.
  3. Grédiac M., Sur F., Blaysat B. The grid method for in-plane displacement and strain measurement: a review and analysis // Strain. ? 2016. ? Vol. 52, iss. 3. ? P. 205–243. ? doi: 10.1111/str.12182.
  4. Stress field analysis in orthogonal cutting process using digital image correlation technique / Z. Dong, X.-M. Zhang, W.-J. Xu, H. Ding // Journal of Manufacturing Science and Engineering. ? 2017. ? Vol. 139. – P. 031001. ? doi: 10.1115/1.4033928.
  5. Ramesh K., Sasikumar S. Digital photoelasticity: recent developments and diverse applications // Optics and Lasers in Engineering. ? 2020. ? Vol. 135. ? doi: 10.1016/j.optlaseng.2020.106186.
  6. Isogimi K., Kitagawa T., Kurita H. Fundamental research of stress analysis in cutting tool by means of caustics method // Journal of the Japan Society for Precision Engineering. ? 1988. ? Vol. 54, iss. 2. ? P. 390?395. ? doi: 10.2493/jjspe.54.390.
  7. DHI contemporary methodologies: a review and frontiers / J.M. Flores-Moreno, M.D.L. Torre-Ibarra, M.D.S. Hernandez-Montes, F.M. Santoyo // Optics and Lasers in Engineering. ? 2020. ? Vol. 135. ? P. 106184. – doi: 10.1016/j.optlaseng.2020.106184.
  8. Laser speckle based digital optical methods in structural mechanics: a review / I.M. De la Torre, M.D.S. Hernandez-Montes, J.M. Flores-Moreno, F.M. Santoyo // Optics and Lasers in Engineering. ? 2016. ? Vol. 87. ? P. 32?58. ? doi: 10.1016/j.optlaseng.2016.02.008.
  9. Разумовский И.А. Интерференционно-оптические методы механики деформируемого твердого тела. ? М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. ? 240 с. ? ISBN 5-7038-2731-4.
  10. Longbottom J.M., Lanham J.D. Cutting temperature measurement while machining – a review // Aircraft Engineering and Aerospace Technology. ? 2005. ? Vol. 77, iss. 2. ? P. 122?130. ? doi: 10.1108/00022660510585956.
  11. Komanduri R.A., Hou Z.B. Review of the experimental techniques for the measurement of heat and temperatures generated in some manufacturing processes and tribology // Tribology International. ? 2001. ? Vol. 34. ? P. 653?682. ? doi: 10.1016/S0301-679X(01)00068-8.
  12. Yoshioka H., Hashizume H., Shinno H. In-process microsensor for ultraprecision machining // IEE Proceedings – Science Measurement and Technology. ? 2004. ? Vol. 151, N 2. ? doi: 10.1049/ip-smt:20040375.
  13. On the measurement of temperature in material removal processes / M.A. Davies, T. Ueda, R. M’;Saoubi, B. Mullany, A.L. Cooke // CIRP Annals. ? 2007. ? Vol. 56, iss. 2. ? P. 581?604. – doi: 10.1016/j.cirp.2007.10.009.
  14. Radiation thermometry applied to temperature measurement in the cutting process / J. Pujana, L. del Campo, R.B. Pérez-Sáez, M.J. Tello, I. Gallego, P.J. Arrazola // Measurement Science and Technology. ? 2007. ? Vol. 18, N 11. ? P. 3409?3416. ? doi: 10.1088/0957-0233/18/11/022.
  15. A calibrated dual-wavelength infrared thermometry approach with non-greybody compensation for machining temperature measurements / A. Hijazi, S. Sachidanandan, R. Singh, V. Madhavan // Measurement Science and Technology. ? 2011. ? Vol. 22, N 2. ? P. 1?13. ? doi: 10.1088/0957-0233/22/2/025106.
  16. Magunov A.N. Laser thermometry of solids. – Cambridge: Cambridge International Science Publishing, 2006. ? 240 p. ? ISBN 978-1-904602-12-5.
  17. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures / J.D. James, J.A. Spittle, S.G.R. Brown, R.W. Evans // Measurement Science and Technology. ? 2001. ? Vol. 12. – P. R1–R15. ? doi: 10.1088/0957-0233/12/3/201.
  18. Goryainov V.V., Popov M.I., Chernyshov A.D. Solving the stress problem in a sharp wedge-whaped cutting tool using the quick decomposition method and the problem of matching boundary conditions // Mechanics of Solids. ? 2019. ? Vol. 54, N 7. ? P. 1083–1097. ? doi: 10.3103/S0025654419070094.
  19. Analytical model of temperature distribution in metal cutting based on potential theory / F. Klocke, M. Brockmann, S. Gierlings, D. Veselovac // Mechanical Sciences. ? 2015. ? Vol. 6. ? P. 89?94. ? doi: 10.5194/ms-6-89-2015.
  20. Recent advances in modelling of metal machining processes / P.J. Arrazola, T. Özel, D. Umbrello, M. Davies, I.S. Jawahir // CIRP Annals. ? 2013. ? Vol. 62, iss. 2. ? P. 695?718. ? doi: 10.1016/j.cirp.2013.05.006.
  21. Безъязычный В.Ф., Счерек М. Развитие исследований тепловых процессов в технологии машиностроения // Записки горного института. ? 2018. ? Т. 232. ? С. 395?400. ? doi: 10.31897/PMI.2018.4.395.
  22. Mathematical modelling of cutting process system / J.J. Olt, A.A. Liyvapuu, O.O. Liivapuu, V.V. Maksarov, T.T. Tärgla // Engineering Mathematics I. ? Cham: Springer, 2016. ? P. 173?186. ? (Springer Proceedings in Mathematics and Statistics; vol. 178). – doi: 10.1007/978-3-319-42082-0_11.
  23. Патент 2436039 Российская Федерация, МПК G 01 B 11/16 (2006.01). Способ исследования деформации режущего инструмента в процессе резания / И.А. Ефимович, Е.И. Швецова. ? № 2010134541/28; заявл. 18.08.2010; опубл. 10.12.2011, Бюл. № 34.
  24. Патент 2442967 Российская Федерация, МПК G 01 K 5/48, B 23 Q 11/00 (2006.01). Способ определения температурных полей в режущей части инструмента в процессе резания / И.А. Ефимович, И.С. Золотухин, Е.И. Швецова. ? № 2010134543/28; заявл. 18.08.10; опубл. 20.02.12, Бюл. № 5.
  25. Патент 151653 Российская Федерация, МПК G 01 B 11/16 (2006.01). Интерферометрическая установка / И.А. Ефимович, И.С. Золотухин, В.И. Ефимович. ? № 2014138554/28, заявл. 23.09.2014; опубл.10.04.15, Бюл. № 10.
  26. Ефимович И.А., Золотухин И.С., Завьялов Е.С. Температурный коэффициент линейного расширения вольфрамо-кобальтовых твердых сплавов // Обработка металлов (технология, оборудование, инструменты). ? 2019. ? Т. 21, № 3. ? С. 129?140. ? doi: 10.17212/1994-6309-2019-21.3-129-140.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).