Enhanced assessment of technological factors for Ti-6Al-4V and Al-Cu-Mg strength properties

Cover Page

Cite item

Abstract

Introduction. The strength of construction materials when used under cyclic loads is of great importance in design engineering. A significant number of factors that affect the fatigue resistance have predetermined the creation of numerous methods that consider such influence. Nondestructive methods that are based on the connection of the physical degradation of material with strain properties enable evaluating experimentally the fatigue properties of materials. Purpose of study: the analysis of the processes of energy dissipation and strain accumulation during the inelastic cyclic strain of samples, using the VT6 (Ti-6Al-4V) titanium alloy and the D16 (Al-Cu-Mg) aluminum alloy before and after the technological impact. The work experimentally investigates the physical processes of degradation of the VT6 and D16 alloy samples that accompany the process of fatigue failure in materials with homogeneous and inhomogeneous stress-strain states in the concentrator (in the form of a hole and a weld). Typical modes are used to reach the fatigue testing that determine the critical stress in a material sample – the stress at which physical properties (temperature, strain) change without reaching the fatigue failure of samples. Critical stress amplitudes in the cycle, based on the data obtained during the experiment and the results of mathematical simulation, are compared. The effect of stress concentrators on critical loads that a detail can withstand after a unit operation is estimated by the finite-element method (FEM). As a result, the effect of the operational and technological factors on critical stress determined by strain and temperature is estimated. Comparative tests of the VT6 and D16 alloy samples with and without stress concentrators showed that the amplitudes of critical stress decrease by more than 30% in comparison with the ones that are without stress concentrators. The low-cycle fatigue tests of the D16 alloy samples are carried out. Mathematical simulation of the cyclic strain of the samples is carried out using MSC.Marc package. The results of the cyclic loading tests, which show that the characteristics of the technological process reduce the amplitudes of the critical stress of the VT6 and D16 alloys and affect the fatigue properties of the D16 aluminum alloy, are discussed. Mathematical simulation corresponded positively to the experimental data. Such correspondence indicates the possibility of conducting qualitative numerical assessments of the beginning of the inelastic strain accumulation process in structures with stress concentrators under the cyclic stress and the increasing stress amplitude, using the typical sample made of hardening elastoplastic material.

About the authors

K. V. Zakharchenko

Email: Zaharchenkok@mail.ru
Ph.D. (Engineering), 1. Lavrentyev Institute of Hydrodynamics SB RAS, 15 Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation; 2. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation; Zaharchenkok@mail.ru

V. I. Kapustin

Email: Fatigue.nstu@mail.ru
Ph.D. (Engineering), Associate Professor, 1. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation; 2. Lavrentyev Institute of Hydrodynamics SB RAS, 15 Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation; Fatigue.nstu@mail.ru

A. Yu. Larichkin

Email: larichking@gmail.com
Ph.D. (Physics and Mathematics), 1. Lavrentyev Institute of Hydrodynamics SB RAS, 15 Ac. Lavrentieva ave., Novosibirsk, 630090, Russian Federation; 2. Novosibirsk State University, 1 Pirogova Str., Novosibirsk, 630090, Russian Federation; larichking@gmail.com

References

  1. Трощенко В.Т., Сосновский Л.А. Сопротивление усталости металлов и сплавов: справочник. – Киев: Наукова думка, 1987. – 1302 с.
  2. Иванова В.С. Структурно-энергетическая теория усталости металлов // Циклическая прочность металлов. – М.: Изд-во АН СССР, 1962. – С. 11–23.
  3. Coffin L.F. Low-cycle fatigue: a review // Applied Material Research. – 1962. – Vol. 1, N 3. – P. 129–141.
  4. Bathias C. Gigacycle fatigue in mechanical practice. – Vergal: marcel Dekker, 2005. – 304 p. – ISBN 9780203020609. – doi: 10.1201/9780203020609.
  5. Naito T., Ueda H., Kihushi M. Fatigue behavior of carburized steel with internal oxides and non-martensitic microstructure near the surface // Metallurgical Transactions A, Physical Metallurgy and Materials Science. – 1984. – Vol. 15, N 7. – P. 1431–1436.
  6. Kanazawa K., Nishijima S. Fatigue fracture of low alloy steel at ultra-high cycle regime under elevated temperature conditions // Journal of the Society of Materials Science. – 1997. – Vol. 46, N 12. – P. 1396–1400. – doi: 10.2472/jsms.46.1396.
  7. Murakami Y., Nomoto T., Ueda T. Factors influencing the mechanism of superlong fatigue in steels // Fatigue and Fracture of Engineering Materials and Structures. – 1999. – Vol. 22, N 7. – P. 581–590. – doi: 10.1046/j.1460-2695.1999.00187.x.
  8. Shiozawa K., Nashino S., Morii Y. Subsurface crack initiation and propagation mechanism of high-strength steelin very high cycle fatigue regime // International Journal of Fatigue. – 2006. – Vol. 28, N 11. – P. 1521–1532. – doi: 10.1016/j.ijfatigue.2005.08.015.
  9. Шанявский А.А. Моделирование усталостных разрушений металлов: синергетика в авиации. – Уфа: Монография, 2007. – 500 с. – ISBN 978-5-94920-058-2.
  10. Locati L. Le prove di cafica come ausilio alla prodetta sone ed alle predusioni // Metallurgia Italiana. – 1955. – Vol. 47, N 9. – P. 245–260.
  11. Prot E.M. Une nouvelle technique d’;essai des materiaux. L’;essai de fatigue sous chrse progressive // Revue de Metallurgie. – 1948. – Vol. 45, N 12. – P. 481–496.
  12. Enomoto N. A method for determining the fatigue limit of metals by means of stepwise load increase tests // Proceedings – American Society for Testing and Materials. – 1959. – Vol. 59. – P. 711–722.
  13. Glage A., Weidner A., Biermann H. Effect of austenite stability on the low cycle fatigue behaviour and microstructure of high alloyed metastable austenitic cast TRIP-steels // Procedia Engineering. – 2010. – Vol. 2, N 1. – P. 2085–2094. – doi: 10.1016/j.proeng.2010.03.224.
  14. Усталостная прочность аустенитной стали Х18Н10Т после равноканального углового прессования / В.Ф. Терентьев, С.В. Добаткин, Д.В. Просвирнин, И.О. Банных, О.В. Рыбальченко, Г.И. Рааб // Деформация и разрушение материалов. – 2008. – № 10. – С. 30–38.
  15. Yang Y.S., Bae J.G., Park C.G. Improvement of the bending fatigue resistance of the hyper-eutectoid steel wires used for tire cords by a post-processing annealing // Materials Science and Engineering: A. – 2008. – Vol. A488. – P. 554–561. – doi: 10.1016/j.msea.2007.11.048.
  16. Структурные особенности поведения высокоуглеродистой перлитной стали при циклическом нагружении / А.В. Макаров, Р.А. Саврай, В.М. Счастливцев, Т.И. Табатчикова, И.Л. Яковлева, Л.Ю. Егорова // Физика металлов и металловедение. – 2011. – Т. 111, № 1. – С. 97–111.
  17. Щипачев А.М., Пояркова Е.В. Влияние усталостной повреждаемости на твердость и внутреннюю накопленную энергию металла // Вестник УГАТУ. – 2007. – Т. 9, № 6 (24). – С. 152–157.
  18. Алешин Н.П., Щербинский В.Г. Радиационная, ультрозвуковая и магнитная дефектоскопия металлоизделий. – М.: Высшая школа, 1991. – 271 с. – ISBN 5-06-000923-8.
  19. Магнитные методы оценки упругой и пластической деформации при циклическом нагружении сталей / Э.С. Горкунов, Р.А. Саврай, А.В. Макаров, С.М. Задворкин // Diagnostics, Resource and Mechanics of Materials and Structures. – 2015. – Iss. 2. – P. 6–15. – doi: 10.17804/2410-9908.2015.2.006-015.
  20. Махутов Н.А., Дубов А.А., Денисов А.С. Исследование статических и циклических деформаций с использованием метода магнитной памяти металла // Заводская лаборатория. Диагностика материалов. – 2008. – Т. 74, № 3. – С. 42–46.
  21. Магнитоупругое размагничивание стали под действием циклического нагружения / К.Р. Муратов, В.Ф. Новиков, Д.Ф. Нерадовский, Р.Х. Казаков // Физика металлов и металловедение. – 2018. – Т. 119, № 1. – С. 19–25. – doi: 10.7868/S0015323018010035.
  22. Эффект «шахматной доски» в распределении напряжений и деформаций на интерфейсах в нагруженном твердом теле: экспериментальная верификация и механизмы мезоскопического каналирования / В.Е. Панин, А.В. Панин, Т.Ф. Елсукова, О.Ю. Кузина // Физическая мезомеханика. – 2005. – Т. 8, № 6. – С. 97–105.
  23. Капустин В.И., Гилета В.П., Захарченко К.В. Экспериментальное изучение закономерностей деформирования алюминиевых сплавов при регулярных нагружениях // Обработка металлов (технология, оборудование, инструменты). – 2011. – № 4 (53). – P. 40–43.
  24. Шанявский А.А., Банов М.Д., Беклемишев Н.Н. Диагностика усталости авиационных конструкций акустической эмиссией. – М: Изд-во МАИ, 2017. – 186 с. – ISBN 978-5-4316-0405-8.
  25. Kapustin V.I., Zakharchenko K.V. On the experimental analysis of dissipative processes under cyclic loading of metals // Journal of Physics: Conference Series. – 2017. – Vol. 894, N 1. – P. 012128. – doi: 10.1088/1742-6596/894/1/012128.
  26. On the effect of plasma electrolytic oxidation on the fatigue strength of V96TS1 (Al-Zn-Mg-Cu) aluminum alloy / K. Zakharchenko, V. Kapustin, M. Legan, A. Larichkin, Y. Lukianov, I. Zverkov // Journal of Physics. Conference Series. – 2020. – Vol. 1666, N 1. – P. 012019. – doi: 10.1088/1742-6596/1666/1/012019.
  27. Zakharchenko K.V., Kapustin V.I., Shutov A.V. On the analysis of energy dissipation and ratcheting during cyclic deformation of the titanium alloy VT6 (Ti-6Al-4V) // Journal of Physics. Conference Series. – 2020. – Vol. 1666, N 1. – P. 012025. – doi: 10.1088/1742-6596/1431/1/012025.
  28. Measuring stress intensity factors during fatigue crack growth using thermoelasticity / F.A. Diaz, E.A. Patterson, R.A. Tomlinson, J.R. Yates // Fatigue and Fracture of engineering materials and structures. – 2004. – Vol. 27, N 7. – P. 571–583. – doi: 10.1111/j.1460-2695.2004.00782.x.
  29. About the effect of plastic dissipation in heat at the crack tip on the stress intensity factor under cyclic loading / N. Ranc, T. Palin-Luc, P.C. Paris, N. Saintier // International Journal of Fatigue. – 2014. – Vol. 58. – P. 56–65. – doi: 10.1016/j.ijfatigue.2013.04.012.
  30. Meneghetti G., Ricotta M. Evaluating the heat energy dissipated in a small volume surrounding the tip of a fatigue crack // International Journal of Fatigue. – 2016. – Vol. 92, pt. 2. – P. 605–615. – doi: 10.1016/j.ijfatigue.2016.04.001.
  31. Фридляндер И.Н. Современные алюминиевые, магниевые сплавы и композиционные материалы на их основе // Металловедение и термическая обработка металлов. – 2002. – № 7. – С. 24–29.
  32. Захарченко К.В., Капустин В.И., Ларичкин А.Ю. О влиянии керамического покрытия на деформационные характеристики алюминиевого сплава Д16АТ // Обработка металлов (технология, оборудование, инструменты). – 2014. – № 3 (64). – P. 37–44.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».