Influence of Diffusion Saturation from Liquid Metal media Solutions to Mechanical Properties of Hard Alloy Cutting Tool

Cover Page

Cite item

Full Text

Abstract

Introduction. One of the most popular ways to increase operational properties of cutting carbide-tipped tool is applying functional coatings on its surface. At the same time, coatings based on titanium carbide TiC are widely used. A sufficiently high scientific and practical interest, from the point of view of the formation of functional coatings, is the technology of diffusion metallization of cutting tools made of hard alloys in Pb-Bi-Li-Ti melts, which can significantly increase its resistance. However, the effect of functional coatings based on titanium carbide TiC on the mechanical properties of hard alloys is described insufficiently. The purpose of the work is to analyze the effect of diffusion saturation of a carbide cutting tool in a Pb-Bi-Li-Ti medium on its mechanical characteristics. The methods of investigation are the following: tests for macro- and microhardness, studies of flexural strength, impact strength and fracture toughness. Results and Discussion. It is revealed that the formed functional diffusion layers affect the mechanical characteristics of coated instruments. In this case, the main influence on the mechanical properties of the coated products is exerted by the temperature of diffusion saturation and its duration. When forming diffusion layers with a thickness of up to 5 μm for VK alloys, the flexural strength, impact strength and fracture toughness gradually increase, with a further increase in thickness, the above characteristics decrease, for TK alloys the thickness is 4 μm. It is found that the application of diffusion titanium coatings can increase such mechanical characteristics of carbide tools as hardness (up to 91 HRA), tensile strength in bending (for 9%WC-15%TiC-6%Co – 1380 MPa, for 92%WC-8%Co – 1875 MPa), impact strength (for 79%WC-15%TiC-6%Co – 2.99 kJ/m2, for 92%WC-8%Co – 5.97 kJ/m2) and fracture toughness (for 79%WC-15%TiC-6%Co – 7.65 MPa, for 92%WC-8%Co – 11.9 MPa).

About the authors

B. E. Eduard

Email: ebobylev@mail.ru
Kuban State Technological University, 2 Moskovskaya st., Krasnodar, 350072, Russian Federation, ebobylev@mail.ru

K. L. Natalia

Email: msat_kubgtu@mail.ru
Kuban State Technological University, 2 Moskovskaya st., Krasnodar, 350072, Russian Federation, msat_kubgtu@mail.ru

References

  1. Ильин А.А., Строганов Г.Б., Скворцова С.В. Покрытия различного назначения для металлических материалов: учебное пособие. – М.: Альфа-М: Инфра-М, 2013. – 144 с. – (Современные технологии. Магистратура). – ISBN 978-5-98281-355-8.
  2. Григорьев С.Н. Методы повышения стойкости режущего инструмента: учебник для студентов втузов. – М.: Машиностроение, 2011. – 368 с. – ISBN 978-5-94275-591-1.
  3. Bobzin K. High-performance coatings for cutting tools // CIRP Journal of Manufacturing Science and Technology. – 2017. – Vol. 18. – P. 1–9. – doi: 10.1016/j.cirpj.2016.11.004.
  4. Caliskan H., Panjan P., Curbanoglu C. Hard coatings on cutting tools and surface finish // Reference Module in Materials Science and Materials Engineering. Comprehensive Materials Finishing. – 2017. – Vol. 3. – P. 230–242. – doi: 10.1016/B978-0-12-803581-8.09178-5.
  5. Evolution of conventional hard coatings for its use on cutting tools / R. Haubner, M. Lessiak, R. Pitonak, A. Köpf, R. Weissenbacher // International Journal of Refractory Metals and Hard Materials. – 2017. – Vol. 62. – P. 210–218. – doi: 10.1016/j.ijrmhm.2016.05.009.
  6. High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings / Y.-Y. Chang, S.-Y. Weng, C.-H. Chen, F.-X. Fu // Surface and Coatings Technology. – 2017. – Vol. 332. – P. 494–503. – doi: 10.1016/j.surfcoat.2017.06.080.
  7. Cardarelli F., Taxil P., Savall A. Tantalum protective thin coating techniques for the chemical process industry: molten salts electrocoating as a new alternative // International Journal of Refractory Metals and Hard Materials. – 1996. – Vol. 14, iss. 5–6. – P. 365–381.
  8. Understanding the diffusion wear mechanisms of WC-10%Co carbide tools during dry machining of titanium alloys / C. Ramirez, A. Idhil Ismail, C. Gendarme, M. Dehmas, E. Aeby-Gautier, G. Poulachon, F. Rossi // Wear. – 2017. – Vol. 390–391. – P. 61–70. – doi: 10.1016/j.wear.2017.07.003.
  9. Платонов Г.Л., Аникин В.Н., Аникеев А.И. Изучение роста износостойких слоев из карбида титана на твердых сплавах // Порошковая металлургия. – 1980. – № 8 (212). – С. 48–52.
  10. Диффузионные карбидные покрытия / В.Ф. Лоскутов, В.Г. Хижняк, Ю.А. Куницкий, М.В. Киндрачук. – Киев: Техника, 1991. – 168 с. – ISBN 5-335-00501-7.
  11. Formation of Titanium Carbide (TiC) and TiC@C core-shell nanostructures by ultra-short laser ablation of titanium carbide and metallic titanium in liquid / A. De Bonis, A. Santagata, A. Galasso, A. Laurita, R. Teghil // Journal of Colloid and Interface Science. – 2017. – Vol. 489. – P. 76–84. – doi: 10.1016/j.jcis.2016.08.078.
  12. Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric / Z.J. Xie, Y.J. Mai, W.Q. Lian, S.L. He, X.H. Jie // Surface and Coatings Technology. – 2016. – Vol. 300. – P. 50–57. – doi: 10.1016/j.surfcoat.2016.04.080.
  13. Effect of titanium carbide coating on the osseointegration response in vitro and in vivo / M. Bramaa, N. Rhodese, J. Hunte, A. Ricci, R. Teghil, S. Migliaccio, C.D. Rocca, S. Leccisotti, A. Lioi, M. Scandurra, G. De Maria, D. Ferro, F. Pu, G. Panzini, L. Politi, R. Scandurra // Biomaterials. – 2007. – Vol. 28, iss. 4. – P. 595–608. – doi: 10.1016/j.biomaterials.2006.08.018.
  14. On the effect of the substrate to target position on the properties of titanium carbide/carbon coatings / J. Daniel, P. Soucek, L. Zábranský, V. Buršíková, M. Stupavská, P. Vašina // Surface and Coatings Technology. – 2017. – Vol. 328. – P. 462–468. – doi: 10.1016/j.surfcoat.2017.06.076.
  15. Balogh Z., Schmitz G. Diffusion in metals and alloys // Physical Metallurgy. – 5th ed. – Amsterdam: Elsevier, 2014. – Vol. 1. – P. 387–559. – doi: 10.1016/b978-0-444-53770-6.00005-8.
  16. Бобылёв Э.Э., Соколов А.Г. Элементно-фазовый состав и свойства диффузионных титановых покрытий на режущем твердосплавном инструменте типа ТК и ВК // Письма о материалах. – 2017. – Т. 7, № 3. – С. 222–228. – doi: 10.22226/2410-3535-2017-3-222-228.
  17. Sokolov E.G., Artem’;ev V.P. Effect of pores in powder materials on the formation of titanium and chromium diffusion coatings // Metal Science and Heat Treatment. – 2002. – Vol. 44, N 9–10. – P. 459–459. – doi: 10.1023/A:1021981401891.
  18. Соколов А.Г., Бобылёв Э.Э. Влияние диффузионного титанирования из среды легкоплавких жидкометаллических растворов на работоспособность режущего твердосплавного инструмента типа ТК и ВК // Обработка металлов (технология, оборудование, инструменты). – 2018. – Т. 20, № 4. – С. 46–59. – doi: 10.17212/1994-6309-2018-20.4-46-59.
  19. Chaevsky M. Comparison of methods of formation of protective coating from high-temperature liquid media // Metal Science and Heat Treatment. – 2001. – Vol. 43, N 11–12. – P. 446–466.
  20. Патент 2451108 Российская Федерация, МПК С 23 C 10/26 (2006.01). Способ обработки инструмента из стали или твердого сплава / А.Г. Соколов, Мансиа Салахалдин. – Опубл. 20.05.2012, Бюл. № 14. – 5 с.
  21. Патент 2521187 Российская Федерация, МПК С 23 С 10/18; С 23 С 2/04 (2006.01). Устройство для диффузионной металлизации в среде легкоплавких жидкометаллических растворов / А.Г. Соколов. – Опубл. 27.06.2014, Бюл. № 18. – 8 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».