Mechanical and Tribological Properties of a Metal Wall Grown by an Electric Arc Method in an Atmosphere of Shielding Gas

Cover Page

Cite item

Full Text

Abstract

Introduction. At present, additive manufacturing is one of the most promising methods to optimize the production processes of complex metal products. It is based on the layer-by-layer metal deposition in accordance with a three-dimensional model created using computer aided design software. Various metal powders and wires are applied as a feedstock, and a laser or electron beam, as well as an arc can be employed as a heat source. Despite the existing rather large number of developed methods for the complex metal product additive manufacturing, some of them are very expensive that results in a high production cost. Due to this fact, developing equipment and procedures for the layer-by-layer gas metal arc deposition using carbon dioxide as a shielding gas is an urgent task. The aim of the paper is to investigate the mechanical and tribological properties of carbon steel samples built by the layer-by-layer gas metal arc deposition according to the developed procedure. The carbon steel samples, built by layer-by-layer gas metal arc deposition using carbon dioxide as a shielding gas, are studied. The research methods are mechanical tests of tensile strength, yield strength and elongation of grown samples, as well as tribological properties (wear surface area, friction coefficient and amplitude of vibrational accelerations). Results and Discussion. It is found that the samples built by the developed additive manufacturing procedure possessed the mechanical properties commensurate with hot-rolled steel. It is established that there is a decrease in linear energy when growing a metal wall according to the developed technology due to preheating of the electrode wire to 400...600 ° C by installing an additional current supply located at a distance of 250…400 mm from the end of the wire to pass the heating current. As a result, the tribological properties of the grown samples are increased and its wear became more uniform.

About the authors

M. A. Kuznetsov

Email: kyznechik_85@mail.ru
Ph.D. (Engineering), Yurga Institute of Technology, TPU Affiliate, 26 Leningradskaya st., Yurga, 652055, Russian Federation, kyznechik_85@mail.ru

V. I. Danilov

Email: dvi@ispms.tsc.ru
D.Sc. (Physics and Mathematics), Professor, Institute of Strength Physics and Materials Science SB RAS, 2/4, Academic Avenue, Tomsk, 635055, Russian Federation, dvi@ispms.tsc.ru

M. A. Krampit

Email: savage_jawa@mail.ru
School of Engineering, 24, Leningrad Street, Yurga, 650059, Russian Federation, savage_jawa@mail.ru

D. A. Chinakhov

Email: chinakhov@tpu.ru
Ph.D. (Engineering), Associate Professor, 1. Yurga Institute of Technology, TPU Affiliate, 26 Leningradskaya st., Yurga, 652055, Russian Federation; 2. Institute of Strength Physics and Materials Science SB RAS, 2/4, Academic Avenue, Tomsk, 635055, Russian Federation, chinakhov@tpu.ru

M. S. Slobodyan

Email: s.m.s@ngs.ru
Ph.D. (Engineering), Institute of Strength Physics and Materials Science SB RAS, 2/4, Academic Avenue, Tomsk, 635055, Russian Federation, s.m.s@ngs.ru

References

  1. ГОСТ Р 57558–2017. Аддитивные технологические процессы. Базовые принципы. Ч. 1. Термины и определения. – М.: Стандартинформ, 2017. – 12 с.
  2. Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science / L.E. Murr, E. Martinez, K.N. Amato, S.M. Gaytan, J. Hernandez, D.A. Ramirez, P.W. Shindo, F. Medina, R.B. Wicker // Journal of Materials Research and Technology. – 2012. – Vol. 1 (28). – P. 42–54. – doi: 10.1016/S2238-7854(12)70009-1.
  3. Metal fabrication by additive manufacturing using laser and electron beam melting technologies / L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F. Medina, R.B. Wicker // Journal of Materials Science and Technology. – 2012. – Vol. 28, iss. 1. – P. 1–14. – doi: 10.1016/S1005-0302(12)60016-4.
  4. Laser additive manufacturing of metallic components: materials, processes and mechanisms / D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe // International Materials Reviews. – 2012. – Vol. 57, iss. 3. – P. 133–164. – doi: 10.1179/1743280411Y.0000000014.
  5. Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs / S.L. Sing, J. An, W.Y. Yeong, F.E. Wiria // Journal of Orthopaedic Research. – 2016. – Vol. 34, iss. 3. – P. 369–385. – doi: 10.1002/jor.23075.
  6. Körner C. Additive manufacturing of metallic components by selective electron beam melting – a review // International Materials Reviews. – 2016. – Vol. 61, iss. 5. – P. 361–377. – doi: 10.1080/09506608.2016.1176289.
  7. Additive manufacturing of metals / D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann // Acta Materialia. – 2016. – Vol. 117. – P. 371–392. – doi: 10.1016/j.actamat.2016.07.019.
  8. A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications / W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H. Miura // Powder Technology. – 2018. – Vol. 331. – P. 74–97. – doi: 10.1016/j.powtec.2018.03.010.
  9. Chen S., Tong Y., Liaw P.K. Additive manufacturing of high-entropy alloys: a review // Entropy. – 2018. – Vol. 20, iss. 12. – P. 937. – doi: 10.3390/e20120937.
  10. Ahmed N. Direct metal fabrication in rapid prototyping: a review // Journal of Manufacturing Processes. – 2019. – Vol. 42. – P. 167–191. – doi: 10.1016/j.jmapro.2019.05.001.
  11. Frazier W.E. Metal additive manufacturing: a review // Journal of Materials Engineering and Performance. – 2014. – Vol. 23 (6). – P. 1917–1928. – doi: 10.1007/s11665-014-0958-z.
  12. The metallurgy and processing science of metal additive manufacturing / W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, S.S. Babu // International Materials Reviews. – 2016. – Vol. 61, iss. 5. – P. 315–360. – doi: 10.1080/09506608.2015.1116649.
  13. Murr L.E. A Metallographic review of 3D printing/additive manufacturing of metal and alloy products and components // Metallography, Microstructure, and Analysis. – 2018. – Vol. 7, iss. 2. – P. 103–132. – doi: 10.1007/s13632-018-0433-6.
  14. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review / Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor // Materials and Design. – 2018. – Vol. 139. – P. 565–586. – doi: 10.1016/j.matdes.2017.11.021.
  15. Additive manufacturing of metallic components – Process, structure and properties / T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang // Progress in Materials Science. – 2018. – Vol. 92. – P. 112–224. – doi: 10.1016/j.pmatsci.2017.10.001.
  16. Metal additive manufacturing in the commercial aviation industry: a review / A. Gisario, M. Kazarian, F. Martina, M. Mehrpouya // Journal of Manufacturing Systems. – 2019. – Vol. 53. – P. 124–149. – doi: 10.1016/j.jmsy.2019.08.005.
  17. Progress in additive manufacturing on new materials: a review / N. Li, S. Huang, G. Zhang, R. Qin, W. Liu, H. Xiong, G. Shi, J. Blackburn // Journal of Materials Science and Technology. – 2019. – Vol. 35, iss. 2. – P. 242–269. – doi: 10.1016/j.jmst.2018.09.002.
  18. Wire-feed additive manufacturing of metal components: technologies, developments and future interests / D. Ding, X. Pan, D. Cuiuri, H. Li // International Journal of Advanced Manufacturing Technology. – 2015. – Vol. 81. – P. 465–481. – doi: 10.1007/s00170-015-7077-3.
  19. Oliveira J.P., Santos T.G., Miranda R.M. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice // Progress in Materials Science. – 2020. – Vol. 107. – P. 100590. – doi: 10.1016/j.pmatsci.2019.100590.
  20. Wire + arc additive manufacturing / S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove // Materials Science and Technology. – 2016. – Vol. 32, iss. 7. – P. 641–647. – doi: 10.1179/1743284715Y.0000000073.
  21. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement / B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, J. Norrish // Journal of Manufacturing Processes. – 2018. – Vol. 35. – P. 127–139. – doi: 10.1016/j.jmapro.2018.08.001.
  22. Strategies and processes for high quality wire arc additive manufacturing / C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman // Additive Manufacturing. – 2018. – Vol. 22. – P. 672–686. – doi: 10.1016/j.addma.2018.06.020.
  23. Deposition of Ti-6Al-4V using laser and wire. Part I: Microstructural properties of single beads / E. Brandl, V. Michailov, B. Viehweger, C. Leyens // Surface and Coatings Technology. – 2011. – Vol. 206. – P. 1120–1129. – doi: 10.1016/j.surfcoat.2011.07.095.
  24. Deposition of Ti-6Al-4V using laser and wire. Part II: Hardness and dimensions of single beads / E. Brandl, V. Michailov, B. Viehweger, C. Leyens // Surface and Coatings Technology. – 2011. – Vol. 206. – P. 1130–1141. – doi: 10.1016/j.surfcoat.2011.07.094.
  25. Mechanical properties of additive manufactured titanium (Ti-6Al-4V) blocks deposited by a solid-state laser and wire / E. Brandl, F. Palm, V. Michailov, B. Viehweger, C. Leyens // Materials and Design. – 2011. – Vol. 32. – P. 4665–4675. – doi: 10.1016/j.matdes.2011.06.062.
  26. Ding Y., Akbari M., Kovacevic R. Process planning for laser wire-feed metal additive manufacturing system // International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 95, iss. 1–4. – P. 355–365. – doi: 10.1007/s00170-017-1179-z.
  27. Laser wire deposition of a large Ti-6Al-4V space component / N. Chekir, J.J. Sixsmith, R. Tollett, M. Brochu // Welding Journal. – 2019. – Vol. 28, iss. 6. – P. 172-s–180-s. – doi: 10.29391/2019.98.014.
  28. Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V / B.T. Gibson, Y.K. Bandari, B.S. Richardson, W.C. Henry, E.J. Vetland, T.W. Sundermann, L.J. Love // Additive Manufacturing. – 2020. – Vol. 32. – P. 100993. – doi: 10.1016/j.addma.2019.100993.
  29. Effect of heat input on phase content, crystalline lattice parameter, and residual strain in wire-feed electron beam additive manufactured 304 stainless steel / S. Tarasov, A. Filippov, N. Savchenko, S. Fortuna, V. Rubtsov, E. Kolubaev, S. Psakhie // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 99, iss. 9–12. – P. 2353–2363. – doi: 10.1007/s00170-018-2643-0.
  30. Fuchs J., Schneider C., Enzinger N. Wire-based additive manufacturing using an electron beam as heat source // Welding in the World. – 2018. – Vol. 62, iss. 2. – P. 267–275. – doi: 10.1007/s40194-017-0537-7.
  31. Titanium alloy repair with wire-feed electron beam additive manufacturing technology / P. Wanjara, K. Watanabe, C. de Formanoir, Q. Yang, C. Bescond, S. Godet, M. Brochu, K. Nezaki, J. Gholipour, P. Patnaik // Advances in Materials Science and Engineering. – 2019. – Vol. 2019. – P. 3979471. – doi: 10.1155/2019/3979471.
  32. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V / F. Martina, J. Mehnen, S.W. Williams, P. Colegrove, F. Wang // Journal of Materials Processing Technology. – 2012. – Vol. 212. – P. 1377–1386. – doi: 10.1016/j.jmatprotec.2012.02.002.
  33. Fatigue crack propagation behaviour in wire + arc additive manufactured Ti-6Al-4V: Effects of microstructure and residual stress / J. Zhang, X. Wang, S. Paddea, X. Zhang // Materials and Design. – 2016. – Vol. 90. – P. 551–561. – doi: 10.1016/j.matdes.2015.10.141.
  34. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment / J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu // Journal of the Mechanical Behavior of Biomedical Materials. – 2017. – Vol. 69. – P. 19–29. – doi: 10.1016/j.jmbbm.2016.12.015.
  35. Hönnige J.R., Colegrove P., Williams S. Improvement of microstructure and mechanical properties in wire + arc additively manufactured Ti-6Al-4V with machine hammer peening // Procedia Engineering. – 2017. – Vol. 216. – P. 8–17. – doi: 10.1016/j.proeng.2018.02.083.
  36. Enhanced strength and ductility in thin Ti-6Al-4V alloy components by alternating the thermal cycle strategy during plasma arc additive manufacturing / J. Lin, Y. Lv, D. Guo, X. Wu, Z. Li, C. Liu, B. Guo, G. Xu, B. Xu // Materials Science and Engineering A. – 2019. – Vol. 759. – P. 288–297. – doi: 10.1016/j.msea.2019.05.025.
  37. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment / J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li, Y. Wu, B. Xu // Journal of the mechanical behavior of biomedical materials. – 2017. – Vol. 69. – P. 19–29. – doi: 10.1016/j.jmbbm.2016.12.015.
  38. Ríos S., Colegrove P.A., Williams S.W. Metal transfer modes in plasma wire+arc additive manufacture // Journal of Materials Processing Technology. – 2019. – Vol. 264. – P. 45–54. – doi: 10.1016/j.jmatprotec.2018.08.043.
  39. Interrupted fatigue testing with periodic tomography to monitor porosity defects in wire + arc additive manufactured Ti-6Al-4V / R. Biswal, X. Zhang, M. Shamir, A.A. Mamun, M. Awd, F. Walther, A.K. Syed // Additive Manufacturing. – 2019. – Vol. 28. – P. 517–527. – doi: 10.1016/j.addma.2019.04.026.
  40. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement / A.R. McAndrew, M.A. Rosales, P.A. Colegrove, J.R. Hönnige, A. Ho, R. Fayolle, K. Eyitayo, I. Stan, P. Sukrongpang, A. Crochemore, Z. Pinter // Additive Manufacturing. – 2018. – Vol. 21. – P. 340–349. – doi: 10.1016/j.addma.2018.03.006.
  41. Residual stress of as-deposited and rolled wire + arc additive manufacturing Ti-6Al-4V components / F. Martina, M.J. Roy, B.A. Szost, S. Terzi, P.A. Colegrove, S.W. Williams, P.J. Withers, J. Meyer, M. Hofmann // Materials Science and Technology. – 2016. – Vol. 32, iss. 1. – P. 1439–1448. – doi: 10.1080/02670836.2016.1142704.
  42. The effectiveness of combining rolling deformation with wire–arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V / J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, P.B. Prangnell // Materials Characterization. – 2016. – Vol. 114. – P. 103–114. – doi: 10.1016/j.matchar.2016.02.001.
  43. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling / B. Wu, Z. Pan, G. Chen, D. Ding, L. Yuan, D. Cuiuri, H. Li // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 5. – P. 484–494. – doi: 10.1080/13621718.2019.1580439.
  44. Hot-wire arc additive manufacturing Ti-6.5Al-2Zr-1Mo-1V titanium alloy: pore characterization, microstructural evolution, and mechanical properties / T. Lu, C. Liu, Z. Li, Q. Wu, J. Wang, T. Xu, J. Liu, H. Wang, S. Ma // Journal of Alloys and Compounds. – 2020. – Vol. 817. – P. 153334. – doi: 10.1016/j.jallcom.2019.153334.
  45. Elmer J.W., Gibbs G. The effect of atmosphere on the composition of wire arc additive manufactured metal components // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 5. – P. 367–374. – doi: 10.1080/13621718.2019.1605473.
  46. Evaluation of wire arc additive manufacturing for large-sized components in naval applications / A. Queguineur, G. Rückert, F. Cortial, J.Y. Hascoët // Welding in the World. – 2018. – Vol. 62, iss. 2. – P. 259–266. – doi: 10.1007/s40194-017-0536-8.
  47. Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel / N. Rodriguez, L. Vázquez, I. Huarte, E. Arruti, I. Tabernero, P. Alvarez // Welding in the World. – 2018. – Vol. 62, iss. 5. – P. 1083–1096. – doi: 10.1007/s40194-018-0606-6.
  48. Bekker A.C.M., Verlinden J.C. Life cycle assessment of wire + arc additive manufacturing compared to green sand casting and CNC milling in stainless steel // Journal of Cleaner Production. – 2018. – Vol. 177. – P. 438–447. – doi: 10.1016/j.jclepro.2017.12.148.
  49. Hoefer K., Haelsig A., Mayr P. Arc-based additive manufacturing of steel components – comparison of wire- and powder-based variants // Welding in the World. – 2018. – Vol. 62, iss. 2. – P. 243–247. – doi: 10.1007/s40194-017-0527-9.
  50. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel / F. Martina, J. Ding, S. Williams, A. Caballero, G. Pardal, L. Quintino // Additive Manufacturing. – 2019. – Vol. 25. – P. 545–550. – doi: 10.1016/j.addma.2018.11.022.
  51. Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization / V. A Hosseini,  M.Högström, K. Hurtig, M.A. Valiente Bermejo, L.-E. Stridh, L. Karlsson // Welding in the World. – 2019. – Vol. 63. – P. 975–987. – doi: 10.1007/s40194-019-00735-y.
  52. Heat-treatment effects on a bimetallic additively-manufactured structure (BAMS) of the low-carbon steel and austenitic-stainless steel / Md.R.U. Ahsan, A.N.M. Tanvir, G.-J. Seo, B. Bates, W. Hawkins, C. Lee, P.K. Liaw, M. Noakes, A. Nycz, D.B. Kim // Additive Manufacturing. – 2020. – Vol. 32. – P. 101036. – doi: 10.1016/j.addma.2020.101036.
  53. Experimental results for structural design of wire-and-arc additive manufactured stainless steel members / V. Laghi, M. Palermo, G. Gasparini, V.A. Girelli, T. Trombetti // Journal of Constructional Steel Research. – 2020. – P. 105858. – doi: 10.1016/j.jcsr.2019.105858.
  54. Wire-based additive manufacturing of stainless steel components / J.W. Elmer, J. Vaja, J.S. Carpenter, D.R. Coughlin, M.J. Dvornak, P. Hochanadel, P. Gurung, A. Johnson, G. Gibbs // Welding Journal. – 2020. – Vol. 99, iss. 1. – P. 8s–24s. – doi: 10.29391/2020.99.002.
  55. In-process control of distortion in wire and arc additive manufacturing based on a flexible multipoint support fixture / F. Li, S. Chen, J. Shi, Y. Zhao // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 1. – P. 36–42. – doi: 10.1080/13621718.2018.1476083.
  56. Effect of process parameters on the quality of aluminium alloy Al5Si deposits in wire and arc additive manufacturing using a cold metal transfer process / A.G. Ortega, L.C. Galvan, F. Deschaux-Beaume, B. Mezrag, S. Rouquette // Science and Technology of Welding and Joining. – 2018. – Vol. 23, iss. 4. – P. 316–332. – doi: 10.1080/13621718.2017.1388995.
  57. Optimisation of interpass temperature and heat input for wire and arc additive manufacturing 5A06 aluminium alloy / H. Geng, J. Li, J. Xiong, X. Lin // Science and Technology of Welding and Joining. – 2017. – Vol. 22, iss. 6. – P. 472–483. – doi: 10.1080/13621718.2016.1259031.
  58. Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a cold metal transfer process / A.G. Ortega, L.C. Galvan, M. Salem, K. Moussaoui, S. Segonds, S. Rouquette, F. Deschaux-Beaume // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 6. – P. 538–547. – doi: 10.1080/13621718.2018.1564986.
  59. Effects of milling thickness on wire deposition accuracy of hybrid additive/subtractive manufacturing / S. Zhang, Y. Zhang, M. Gao, F. Wang, Q. Li, X. Zeng // Science and Technology of Welding and Joining. – 2019. – Vol. 24, iss. 5. – P. 375–381. – doi: 10.1080/13621718.2019.1595925.
  60. Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling / J. Gu, S. Yang, M. Gao, J. Bai, Y. Zhai, J. Ding // Materials and Design. – 2020. – Vol. 186. – P. 108288. – doi: 10.1016/j.matdes.2019.108288.
  61. Real-time seam defect identification for Al alloys in robotic arc welding using optical spectroscopy and integrating learning / Z. Zhang, W. Ren, Z. Yang, G. Wen // Measurement. – 2020. – Vol. 156. – P. 107546. – doi: 10.1016/j.measurement.2020.107546.
  62. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing / Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu, G. Ma // Materials and Design. – 2020. – Vol. 186. – P. 108205. – doi: 10.1016/j.matdes.2019.108205.
  63. Ultrasonic phased array inspection of a wire + arc additive manufactured (WAAM) sample with intentionally embedded defects / Y. Javadi, C.N. MacLeod, S.G. Pierce, A. Gachagan, D. Lines, C. Mineo, J. Ding, S. Williams, M. Vasilev, E. Mohseni, R. Su // Additive Manufacturing. – 2019. – Vol. 29. – P. 100806. – doi: 10.1016/j.addma.2019.100806.
  64. Horii T., Kirihara S., Miyamoto Y. Freeform fabrication of Ti–Al alloys by 3D micro-welding // Intermetallics. – 2008. – Vol. 16. – P. 1245–1249. – doi: 10.1016/j.intermet.2008.07.009.
  65. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing / W. Ou, T. Mukherjee, G.L. Knapp, Y. Wei, T. DebRoy // International Journal of Heat and Mass Transfer. – 2018. – Vol. 127. – P. 1084–1094. – doi: 10.1016/j.ijheatmasstransfer.2018.08.111.
  66. Development of wire + arc additive manufacture for the production of large-scale unalloyed tungsten components / G. Marinelli, F. Martina, S. Ganguly, S. Williams // International Journal of Refractory Metals and Hard Materials. – 2019. – Vol. 82. – P. 329–335. – doi: 10.1016/j.ijrmhm.2019.05.009.
  67. Microstructure and thermal properties of unalloyed tungsten deposited by wire + arc additive manufacture / G. Marinelli, F. Martina, H. Lewtas, D. Hancock, S. Mehraban, N. Lavery, S. Ganguly, S. Williams // Journal of Nuclear Materials. – 2019. – Vol. 522. – P. 45–53. – doi: 10.1016/j.jnucmat.2019.04.049.
  68. Control of the chemical composition distribution in deposited metal by wire and arc-based additive manufacturing / T. Abe, D. Mori, K. Sonoya, M. Nakamura, H. Sasahara // Precision Engineering. – 2019. – Vol. 55. – P. 231–239. – doi: 10.1016/j.precisioneng.2018.09.010.
  69. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: Microstructure and mechanical properties / Z. Zeng, B.Q. Cong, J.P. Oliveira, W.C. Ke, N. Schell, B. Peng, Z.W. Qi, F.G. Ge, W. Zhang, S.S. Ao // Additive Manufacturing. – 2020. – Vol. 32. – P. 101051. – doi: 10.1016/j.addma.2020.101051.
  70. Кузнецов М.А., Крампит М.А. Проектирование 3D-принтера для электродугового послойного выращивания металлических изделий // Инновации в информационных технологиях, машиностроении и автотранспорте: сборник материалов II Международной научно-практической конференции / ФГБУ ВО КузГТУ. – Кемерово: Изд-во КузГТУ, 2018. – С. 151–153.
  71. Structural and chemical analysis of 3D printed metal products / M.A. Kuznetsov, E.A. Zernin, M.A. Krampit, V.I. Danilov, G.V. Shlyakhova // International Journal of Advanced Science and Technology. – 2019. – Vol. 28, iss.15. – P. 699–709.
  72. Krampit A.G., Krampit M.A. Determination of a wire heat temperature under a pulse-arc welding condition by means of a calculation and graphic method // Applied Mechanics and Materials. – 2014. – Vol. 682. – P. 392–396. – doi: 10.4028/ href='www.scientific.net/AMM.682.392' target='_blank'>www.scientific.net/AMM.682.392.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».