The Influence of the Rolling Direction of AA5056 on the Microstructure and Properties of Weld Joints obtained by Friction Stir Welding

Cover Page

Cite item

Full Text

Abstract

Introduction. Heat emission and plastic deformation during friction stir welding (FSW) cause profound changes in the microstructure and structural properties of weld joints. The grain size, crystallographic texture evolution and second-phase precipitate are the most important microstructural changes during welding of aluminum alloys, which largely influence the strength properties of weld joints. In addition to process-dependent parameters (instrument sump force, its rotation frequency, and travel rate) of the FSW process, a significant factor, determining the properties of the obtained weld joints, is also a mutual orientation of structural elements of the weld material and the direction of the instruments impact on the material during welding. In this regard, the purpose of the work is to analyze the combined influence of the direction of the initial rolling and the instrument pressure during FSW on the structure and properties of weld joints from the AA5056 aluminum alloy. Methods. Research methods are mechanical tests for statistical tension, microhardness as well as metallographic analysis of the structure of welded joints. Results and discussion. As a result, it is established that at low values of the axial force on the instrument (7 kN), defects such as the joint line and voids are observed in welded joints both rolling and transverse directions. When the load increases from 8 kN to 12 kN, defect-free weld joints with enhanced mechanical properties form. It is determined that the rolling direction of AA5056 during FSW does not influence the structure and tensile strength of the weld joints, but it influences the relative elongation and microhardness. It is shown that in the stir zone of the weld joint, obtained by FSW in the transverse direction of AA5056 flats, the relative elongation is 1.3-2 times greater, and the microhardness is by 4-10% greater than that in the stir zone of weld joints, obtained by FSW in the rolling direction of AA5056 flats.

About the authors

A. V. Gusarova

Email: gusarova@ispms.ru
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation, gusarova@ispms.ru

V. E. Rubtsov

Email: rvy@ispms.ru
Ph.D. (Physics and Mathematics), 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, rvy@ispms.ru

E. A. Kolubaev

Email: eak@ispms.ru
D.Sc. (Engineering), 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, eak@ispms.ru

V. A. Bakshaev

Email: bakshaevva@mail.ru
SESPEL Cheboksary enterprise, CJSC, 36 Leningradskaya st., Cheboksary, 428021, Chuvash Republic, Russian Federation, bakshaevva@mail.ru

Y. V. Nikitin

Email: nikitin_yuv@mail.ru
SESPEL Cheboksary enterprise, CJSC, 36 Leningradskaya st., Cheboksary, 428021, Chuvash Republic, Russian Federation, nikitin_yuv@mail.ru

References

  1. Kashaev N., Ventzke V., Çam G. Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications // Journal of Manufacturing Processes. – 2018. – Vol. 36. – P. 571–600. – doi: 10.1016/j.jmapro.2018.10.005.
  2. Nandan R., DebRoy T., Bhadeshia H. Recent advances in friction-stir welding–process, weldment structure and properties // Progress in Materials Science. – 2008. – Vol. 53. – P. 980–1023. – doi: 10.1016/j.pmatsci.2008.05.001.
  3. Friction stir welding of aluminium alloys / P. Threadgill, A. Leonard, H. Shercliff, P. Withers // Journal International Materials Reviews. – 2009. – Vol. 54. – P. 49–93. – doi: 10.1179/174328009X411136.
  4. Ma Z.Y. Friction stir processing technology: a review // Metallurgical and Materials Transactions A. – 2008. – Vol. 39 (A). – P. 642–658. – doi: 10.1007/s11661-007-9459-0.
  5. Weglowski M.S. Friction stir processing – State of the art: review // Archives of Civil and Mechanical Engineering. – 2018. – Vol. 18. – P. 114–129. – doi: 10.1016/j.acme.2017.06.002.
  6. Microstructure evolution of thermo-mechanically affected zone in dissimilar AA2024/7075 joint produced by friction stir welding / C. Zhang, G. Huang, Y. Cao, Y. Zhu, X. Huang, Y. Zhou, Q. Li, Q. Zeng, Q. Liu // Vacuum. – 2020. – Vol. 179. – P. 109515. – doi: 10.1016/j.vacuum.2020.109515.
  7. Gotawala N., Shrivastava A. Analysis of material distribution in dissimilar friction stir welded joints of Al 1050 and copper // Journal of Manufacturing Processes. – 2020. – Vol. 57. – P. 725–736. – doi: 10.1016/j.jmapro.2020.07.043.
  8. Influence of ultrasonic vibrations on the microstructure and mechanical properties of Al/Ti friction stir lap welds / M. Yu, H. Zhao, F. Xu, T. Chen, L. Zhou, X. Song, N. Ma // Journal of Materials Processing Technology. – 2020. – Vol. 282, P. 116676. – doi: 10.1016/j.jmatprotec.2020.116676.
  9. Influence of tool rotational speed on local microstructure, mechanical and corrosion behavior of dissimilar AA2024/7075 joints fabricated by friction stir welding / C. Zhang, Y. Cao, G. Huang, Q. Zeng, Y. Zhu, X. Huang, N. Li, Q. Liu // Journal of Manufacturing Processes. – 2020. – Vol. 49. – P. 214–226. – doi: 10.1016/j.jmapro.2019.11.031.
  10. Microstructure of AA 2024 fixed joints formed by friction stir welding / Eliseev A.A., Kalashnikova T.A., Tarasov S.Yu., Rubtsov V.E., Fortuna S.V., Kolubaev E.A. // AIP Conference Proceedings. – 2015. – Vol. 1683. – P. 020047. – doi: 10.1063/1.4932737.
  11. Structure-property characteristics of Al-Cu joint formed by high-rotation-speed friction stir lap welding without tool penetration into lower Cu sheet / Q. Guan, H. Zhang, H. Liu, Q. Gao, M. Gong, F. Qu // Journal of Manufacturing Processes. – 2020. – Vol. 57. – P. 363–369. – doi: 10.1016/j.jmapro.2020.07.001.
  12. Process parameters optimization of friction stir welding for optimum tensile strength in Al 6061-T6 alloy butt welded joints / D. Maneiah, D. Mishra, K.P. Rao, K.B. Raju // Materials Today: Proceedings. – 2020. – Vol. 27, pt. 2. – P. 904–908. – doi: 10.1016/j.matpr.2020.01.215.
  13. Effect of friction stir welding parameters on defect formation / S.Yu. Tarasov, V.E. Rubtsov, A.A. Eliseev, E.A. Kolubaev, A.V. Filippov, A.N. Ivanov // AIP Conference Proceedings. – 2015. – Vol. 1683. – P. 020230. – doi: 10.1063/1.4932920.
  14. Adhesion transfer in sliding a steel ball against an aluminum alloy / S.Yu. Tarasov, A.V. Filippov, E.A. Kolubaev, T.A. Kalashnikova // Tribology International. – 2017. – Vol. 115. – P. 191–198. – doi: 10.1016/j.triboint.2017.05.039.
  15. Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys / S.K. Park, S.T. Hong, J.H. Park, K.Y. Park, Y.J. Kwon, H.J. Son // Journal Science and Technology of Welding and Joining. – 2010. – Vol. 15, iss. 4. – P. 331–336. – doi: 10.1179/136217110X12714217309696.
  16. Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding / P. Cavaliere, R. Nobile, F.W. Panella, A. Squillace // International Journal of Machine Tools and Manufacture. – 2006. – Vol. 46, iss. 6. – P. 588–594. – doi: 10.1016/j.ijmachtools.2005.07.010.
  17. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys / R. Palanivel, P. Koshy Mathews, N. Murugan, I. Dinaharan // Materials and Design. – 2012. – Vol. 40. – P. 7–16. – doi: 10.1016/j.matdes.2012.03.027.
  18. Microstructural analysis of friction stir butt welded Al-Mg-Sc-Zr alloy heavy gauge sheets / T.A. Kalashnikova, A.V. Chumaevskii, K.N. Kalashnikov, S.V. Fortuna, E.A. Kolubaev, S.Yu. Tarasov // Metals. – 2020. – Vol. 10, iss. 806. – P. 1–20. – doi: 10.3390/met10060806.
  19. Formability evaluation of friction stir welded 6111-T4 sheet with respect to joining material direction / D. Kim, W. Lee, J. Kim, C. Kim, K. Chung // International Journal of Mechanical Sciences. – 2010. – Vol. 52. – P. 612–625. – doi: 10.1016/j.ijmecsci.2010.01.001.
  20. Microstructure and mechanical properties of dissimilar friction stir welded AA2024-7075 joints: Influence of joining material direction / C. Zhang, G. Huang, Y. Cao, Y. Zhu, W. Li, X. Wang, Q. Liu // Materials Science and Engineering: A. – 2019. – Vol. 766, iss. 24. – P. 138368. – doi: 10.1016/j.msea.2019.138368.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».