Multiphase Cu-Ti Coatings coated by Plasma Vacuum-Arc deposition on Cu-Be Alloy С17200

Cover Page

Cite item

Full Text

Abstract

Introduction. Deposition of hard intermetallic coatings is an efficient technology to improve operating characteristics of Cu-Be alloys. PVD of coatings is widely used for surface engineering of constructive materials, deposition of wear and corrosion resistant surface layers. Multiphase and multicomponent coatings are considered as the most efficient hard coatings for surface engineering. In this research, Ti-Cu coatings are deposited by a vacuum-arc plasma-assisted method on hardened BrB2 bronze (alloy C17200) at a temperature of 320 – 330 oC. Processing resulted in ageing of Cu-Be alloy and surface hardening of material. The aim of the research is to analyze the microstructure, phase composition, and tribological properties of Cu-Be alloys modified with plasma-activated PVD coatings based on titanium, with the subsequent development of an effective technology for surface engineering and improvement of the mechanical properties of Cu-Be alloys. Results and discussion. Plasma-assisted PVD of Cu-Ti coatings on the surface of tempered C17200 alloy at 320 – 330 oC resulted in formation of multiphase coatings, consisting of Cu, Ti, CuTi and CuTi2 components. X-ray analysis revealed development of ageing process in Cu-Be alloy which resulted in formation of CuBe inclusions. Wear resistance of modified blocks is investigated. The main mechanism of modified blocks wearing is cracking of the coating with further formation of fine debris of base Cu-Be material. Wear debris is significantly smaller then debris of С17200 alloy without coating. Surface microhardness of blocks processed at 320 –330 oC is comparatively high (540 HV0.02 - 530 HV0.02). Wear resistance of blocks subjected to surface engineering is comparatively low probably because of small thickness of the coating (< 8 µm) and insufficient hardness of matrix material.

About the authors

A. V. Kolubaev

Email: kav@ispms.tsc.ru
D.Sc. (Physics and Mathematics), Professor, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation, kav@ispms.tsc.ru

O. V. Sizova

Email: ovs@ispms.tsc.ru
D.Sc. (Engineering), Professor, Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation, ovs@ispms.tsc.ru

Y. A. Denisova

Email: yudenisova81@yandex.ru
Ph.D. (Engineering), 1. Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation; 2. Institute of High Current Electronics of Siberian Branch of Russian Academy of Sciences, 2/3, pr. Akademicheskii, Tomsk, 634055, Russian Federation, yudenisova81@yandex.ru

A. A. Leonov

Email: laa@tpu.ru
Institute of High Current Electronics of Siberian Branch of Russian Academy of Sciences, 2/3, pr. Akademicheskii, Tomsk, 634055, Russian Federation, laa@tpu.ru

N. V. Teryukalova

Email: natali.t.v@ispms.tsc.ru
Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk, 634055, Russian Federation, natali.t.v@ispms.tsc.ru

A. V. Byeli

Email: vmo@tut.by
D.Sc. (Engineering), Professor, Belarusian National Technical University, 65, Nezavisimosty Ave., Minsk, 220013, Republic of Belarus , vmo@tut.by

References

  1. Тебякин А.В., Фоканов А.Н., Подуражная В.Ф. Многофункциональные медные сплавы // Труды ВИАМ. – 2016. – № 12 (48). – С. 37–44. – doi: 10.18577/2307-6046-2016-0-12-5-5.
  2. Effects of cold working and heat treatment onmicrostructure and wear behaviour of Cu–Be alloyC17200 / A. Khodabakhshi, V. Abouei, N. Mortazavi, S.H. Razavi, H. Hooshyar, M. Esmaily // Tribology – Materials, Surfaces and Interfaces. – 2015. – Vol. 9, iss. 3. – P. 118–127. – doi: 10.1080/17515831.2015.1107257.
  3. Dry sliding wear of Cu-Be alloys / G. Straffelini, L. Maines, M. Pellizzari, P. Scardi // Wear. – 2005. – Vol. 259. – P. 506–511. – doi: 10.1016/j.wear.2004.11.013.
  4. Surface modification of C17200 copper-beryllium alloy by plasma nitriding of Cu-Ti gradient film / Y.D. Zhu, M.F. Yan, Y.X. Zhang, C.S. Zhang // Journal of Materials Engineering and Performance. – 2018. – Vol. 27, iss. 3. – P. 961–969. – doi: 10.1007/s11665-018-3190-4.
  5. Microstructure and mechanical properties of copper-titanium-nitrogen multiphase layers produced by a duplex treatment on C17200 copper-beryllium alloy / M.F. Yan, Y.D. Zhu, C.S. Zhang, Y.X. Zhang, Y.X. Wang, L. Yang // Materials and Design. – 2015. – Vol. 84. – P. 10–17. – doi: 10.1016/j.matdes.2015.06.130.
  6. High temperature plasma nitriding to modify Ti coated C17200 Cu surface: microstructure and tribological properties / Y.D. Zhu, J.W. Yao, M.F. Yan, Y.X. Zhang, Y.X. Wang, Y. Yang, L. Yang // Vacuum. – 2018. – Vol. 147. – P. 163–171. – doi: 10.1016/j.vacuum.2017.10.011.
  7. Improving wear resistance of pure copper by laser surface modification / M. Li, M. Chao, E. Liang, J. Yu, J. Zhang, D. Li // Applied Surface Science. – 2011. – Vol. 258. – P. 1599–1604. – doi: 10.1016/j.apsusc.2011.10.006.
  8. Improving the tribological behavior of copper through novel Ti–Cu intermetallic coatings / M.R. Bateni, F. Ashrafizadeh, J.A. Szpunar, R.A.L. Drew // Wear. – 2002. – Vol. 253. – P. 626–639. – doi: 10.1016/S0043-1648(02)00143-6.
  9. Сдвиговая пластическая деформация и износостойкость ионно-модифицированных материалов с твердыми слоями / А.В. Белый, В.А. Кукареко, В.Е. Рубцов, А.В. Колубаев // Физическая мезомеханика. – 2002. – Т. 5, № 1. – С. 51–57.
  10. Microstructure, adhesion and tribological properties of CrN/CrTiAlSiN/ WCrTiAlN multilayer coatings deposited on nitrocarburized AISI 4140 steel / Y. Li, Q. Ye, Y. Zhu, L. Zhang, Y. He, S. Zhang, J. Xiu // Surface and Coatings Technology. – 2019. – Vol. 362. – P. 27–34. – doi: 10.1016/j.surfcoat.2019.01.091.
  11. Huang X., Etsion I., Shao T. Effects of elastic modulus mismatch between coating and substrate on the friction and wear properties of TiN and TiAlN coating systems // Wear. – 2015. – Vol. 338–339. – P. 54–61. – doi: 10.1016/j.wear.2015.05.016.
  12. Evaluation of the adhesion and failure mechanism of the hard CrN coatings on different substrates / X. Zhang, X.-B. Tian, Z.-W. Zhao, J.-B. Gao, Y.-W. Zhou, P. Gao, Y.-Y. Guo, Z. Lv // Surface and Coatings Technology. – 2019. – Vol. 364. – P. 135–143. – doi: 10.1016/j.surfcoat.2019.01.059.
  13. Kim G.S., Lee S.Y., Hahn J.H., Lee B.Y., Han J.G., Lee J.H., Lee S.Y. Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings // Surface and Coatings Technology. – 2003. – Vol. 171, Iss. 1–3. – P. 83–90. doi: 10.1016/S0257-8972(03)00243-3
  14. Microstructure and mechanical properties of multiphase layer formed during thermo-diffusing of titanium into the surface of C17200 copper–beryllium alloy / L. Yang, F.Y. Zhang, M.F. Yan, M.L. Zhang // Applied Surface Science – 2014. – Vol. 292. – P. 225–230. – doi: 10.1016/j.apsusc.2013.11.121.
  15. Wear resistance of TiN(Ti2N)/Ti composite layer formed on C17200 alloy / L. Liu, H.H. Shen, X.Z. Liu, Q. Guo, T.X. Meng, Z.X. Wang, H.J. Yang, X.P. Liu // Applied Surface Science. – 2016. – Vol. 388. – P. 103–108. – doi: 10.1016/j.apsusc.2016.03.059.
  16. Combining thermo-diffusing titanium and plasma nitriding to modify C61900 Cu-Al alloy / M.F. Yan, Y.D. Zhu, Y.X. Zhang, M.L. Zhang // Vacuum. – 2016. – Vol. 126. – P. 41–44. – doi: 10.1016/j.vacuum.2016.01.015.
  17. Corrosion behavior of TaC/Ta composite coatings on C17200 alloy by plasma surface alloying and CVD carburizing / W. Xi, W. Ding, S. Yu, N. Lin, T. Meng, Q. Guo, X. Liu, X. Liu // Surface and Coatings Technology. – 2019. – Vol. 359. – P. 426–432. – doi: 10.1016/j.surfcoat.2018.12.074.
  18. Plasma generation in a pulsed mode of a non-self-sustained arc discharge with a hybrid hot-and-hollow cathode / V.V. Denisov, Yu.Kh. Akhmadeev, N.N. Koval, S.S. Kovalskii, N.N. Pedin, V.V. Yakovlev // Russian Physics Journal. – 2019. – Vol. 62. – P. 541–546. – doi: 10.1007/s11182-019-01743-7.
  19. Основы конструирования и технологии производства радиоэлектронных средств. Интегральные схемы: учебник для бакалавриата и магистратуры / под ред. Ю.В. Гуляева. – М.: Юрайт, 2018. – 460 с. – ISBN 978-5-534-03170-6.
  20. The effect of microstructure on a beryllium bronze wear / O.V. Sizova, A.V. Kolubaev, A.V. Filippov, N.V. Teryukalova, Yu.A. Denisova // AIP Conference Proceedings. – 2019. – Vol. 2167, iss. 1. – P. 020338-1–020338-4. – doi: 10.1063/1.5132205.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».