The Study of the Process of Difficult-to-Machine Materials Cutting at the Micro-Level
- Authors: Rechenko D.S.1
-
Affiliations:
- Issue: Vol 21, No 2 (2019)
- Pages: 18-25
- Section: TECHNOLOGY
- URL: https://journal-vniispk.ru/1994-6309/article/view/302025
- DOI: https://doi.org/10.17212/1994-6309-2019-21.2-18-25
- ID: 302025
Cite item
Full Text
Abstract
Keywords
About the authors
D. S. Rechenko
Email: rechenko-denis@mail.ru
Candidate of Technical Sciences, Associate Professor, Omsk State Technical University (OmSTU), rechenko-denis@mail.ru
References
- Denkena B., Biermann D. Cutting edge geometries // CIRP Annals – Manufacturing Technology. – 2014. – Vol. 63 (2). – P. 631–653. – doi: 10.1016/j.cirp.2014.05.009.
- Modeling of minimum uncut chip thickness in micro machining of aluminum / M. Malekian, M.G. Mostofa, S.S. Park, M.B.G. Jun // Journal of Materials Processing Technology. – 2012. – Vol. 212. – P. 553–559. – doi: 10.1016/j.jmatprotec.2011.05.022.
- Lucca D.A., Seo Y.W., Komanduri R. Effect of tool edge geometry on energy dissipation in ultraprecision machining // CIRP Annals – Manufacturing Technology. – 1993. – Vol. 42. – P. 83–86. – doi: 10.1016/S0007-8506(07)62397-X.
- Investigations of tool edge radius effect in micromachining: a FEM simulation approach / K.S. Woon, M. Rahman, F.Z. Fang, K.S. Neo, K. Liu // Journal of Materials Processing Technology. – 2008. – Vol. 195. – P. 204–211. – doi: 10.1016/j.jmatprotec.2007.04.137.
- Connolly R., Rubenstein C. The mechanics of continuous chip formation in orthogonal cutting // International Journal of Machine Tool Design and Research. – 1968. – Vol. 8. – P. 159–187. – doi: 10.1016/0020-7357(68)90003-6.
- Abdelmoneim M.E., Scrutton R.F. Tool edge roundness and stable built-up formation in finished machining // Journal of Engineering for Industry. – 1974. – Vol. 96 (4). – P. 1258–1267.
- Komanduri R. Some aspects of machining with negative rake tools simulating grinding // International Journal of Machine Tool Design and Research. – 1971. – Vol. 11. – P. 223–233. – doi: 10.1016/0020-7357(71)90027-8.
- Yuan Z.J., Zhou M., Dong S. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining // Journal of Material Processing Technology. – 1996. – Vol. 62. – P. 327–330. – doi: 10.1016/S0924-0136(96)02429-6.
- Liu X., DeVor R.E., Kapoor S.G. An analytical model for the prediction of minimum chip thickness in micromachining // Journal of Manufacturing Science and Engineering. – 2006. – Vol. 128 (2). – P. 474–481. – doi: 10.1115/1.2162905.
- Feasibility study of ultimate accuracy in microcutting using molecular dynamics simulation / S. Shimada, N. Ikawa, H. Tanaka, G. Ohmori, J. Uchikoshi, H. Yoshinaga // CIRP Annals – Manufacturing Technology. – 1993. – Vol. 42. – P. 91–94. – doi: 10.1016/S0007-8506(07)62399-3.
- Vogler M.P., Devor R.E., Kapoor S.G. On modeling and analysis of machining performance in micro-endmilling. Part II: Cutting force prediction // Journal of Manufacturing Science and Engineering. – 2004. – Vol. 126 (4). – P. 695–705. – doi: 10.1115/1.1813471.
- Microstructure-level modeling of ductile iron machining / L. Chuzhoy, R.E. DeVor, S.G. Kapoor, D.J. Bammann // Journal of Manufacturing Science and Engineering. – 2002. – Vol. 124. – P. 162–169. – doi: 10.1115/1.1455642.
- L’;vov N.P. Determining the minimum possible chip thickness // Machine Tools. – 1969. – Vol. 40. – P. 45.
- Basuray P.K., Misra B.K., Lal G.K. Transition from ploughing to cutting during machining with blunt tools // Wear. – 1977. – Vol. 43 (3). – P. 341–349. – doi: 10.1016/0043-1648(77)90130-2.
- Hard-alloy metal-cutting tool for the finishing of hard materials / D.S. Rechenko, A.Y. Popov, D.Y. Belan, A.A. Kuznetsov // Russian Engineering Research. – 2017. – Vol. 37 (2). – P. 148–149. – doi: 10.3103/S1068798X17020162.
- Contact processes in grinding / A. Yanyushkin, D. Lobanov, P. Arkhipov, V. Ivancivsky // Applied Mechanics and Materials. – 2015. – Vol. 788. – P. 17–21. – doi: 10.4028/ href='www.scientific.net/AMM.788.17' target='_blank'>www.scientific.net/AMM.788.17.
- Study on high-speed grinding mechanisms for quality and process efficiency / B. Li, J. Ni, Y. Jianguo, S.Y. Liang // International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 70. – P. 813–819.
- Subsurface damage in high-speed grinding of brittle materials considering kinematic characteristics of the grinding process / C. Wang, Q. Fang, J. Chen, Y. Liu, T. Jin // International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 83. – P. 937–948. – doi: 10.1007/s00170-015-7627-8.
- Musil J. Hard nanocomposite coatings: thermal stability, oxidation re-sistance and toughness // Surface & Coatings Technology. – 2012. –Vol. 207. – P. 50–65. – doi: 10.1016/j.surfcoat.2012.05.073.
- Musil J. Recent progress in hard nanocomposite coatings. Pt. 2 // Galvanotechnik. – 2010. – Vol. 101, N 9. – P. 2116–2121.
Supplementary files
