Особенности формирования сварного соединения сплава ВТ1-0 сваркой трением с перемешиванием с использованием температуростойких инструментов

Обложка

Цитировать

Полный текст

Аннотация

Введение. Технологический процесс изготовления изделий из титана зачастую осложняется низким качеством сварных соединений при операциях электродуговой или газопламенной сварки из-за больших остаточных напряжений и деформаций. Примером успешного разрешения указанной проблемы является разработка и внедрение таких высокотехнологичных процессов стыкового соединения металлов, как сварка трением с перемешиванием, которая не относится к методам соединения плавлением. Сварка трением с перемешиванием как передовая технология применяется для получения соединений «мягких» металлических материалов, например алюминий. Для «твердых» металлических материалов работа по сварке трением с перемешиванием была ограничена из-за высоких требований к сварочному инструменту. Целью работы является исследование возможности применения инструментов, изготовленных из диборида циркония с добавками карбида кремния и карбида вольфрама в кобальтовой связке при сварке трением с перемешиванием титанового сплава ВТ1-0, а также изучение формирования сварного шва, полученного в защитной атмосфере аргона с целью предотвращения окисления в приповерхностных слоях и изменения термического воздействия на материал. Результаты и обсуждение. На основании данных оптической и сканирующей электронной микроскопии показано, что структура сварного шва является типичной для такого вида сварки, (градиентной), состоящей из зоны термомеханического воздействия и зоны перемешивания с фрагментированной структурой. При варьировании параметров сварки было показано, что на дефектность сварного шва в большей степени влияет скорость сварки, что обусловлено существенным различием в термическом воздействии на материал. Использование при сварке трением с перемешиванием титанового сплава защитной атмосферы аргона изменяет структуру металла в зоне фрикционного разогрева и устраняет крупные несплошности, образующиеся без защитной атмосферы аргона при низкой скорости сварки, кроме того, при его использовании отсутствует окисление титана, которое происходит в процессе сварки. Экспериментальные данные показывают, что использование инструмента из диборида циркония с добавками карбида кремния в качестве материала для инструмента сварки трением с перемешиванием может приводить к избыточному появлению инородных включений в зоне перемешивания, связанных с хрупким разрушением инструмента, что не наблюдается при использовании инструмента, изготовленного из карбида вольфрама.

Об авторах

А. И. Амиров

Email: amirov@ispms.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, amirov@ispms.ru

В. Р. Утяганова

Email: filaret_2012@mail.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, filaret_2012@mail.ru

В. А. Белобородов

Email: vabel@ispms.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, vabel@ispms.ru

А. А. Елисеев

Email: alan@ispms.ru
Институт физики прочности и материаловедения СО РАН, пр. Академический, 2/4, г. Томск, 634055, Россия, alan@ispms.ru

Список литературы

  1. Friction stir welding and processing / R.S. Mishra, Z.Y. Ma // Materials Science and Engineering R: Reports. – 2005. – Vol. 50, iss. 1–2. – P. 1–78. – doi: 10.1016/j.mser.2005.07.001.
  2. Nandan R., Debroy T., Bhadeshia H. Recent advances in friction-stir welding – Process, weldment structure and // Progress in Materials Science. – 2008. – Vol. 53, iss. 6. – P. 980–1023. – doi: 10.1016/j.pmatsci.2008.05.001.
  3. Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4V / A. Farias, G.F. Batalha, E.F. Prados, R. Magnabosco, S. Delijaicov // Wear. – 2013. – Vol. 302, iss. 1–2. – P. 1327–1333. – doi: 10.1016/j.wear.2012.10.025.
  4. Liu H.J., Zhou L., Liu Q.W. Microstructural evolution mechanism of hydrogenated Ti–6Al–4V in the friction stir welding and post-weld dehydrogenation process // Scripta Materialia. – 2009. – Vol. 61, iss. 11. – P. 1008–1011. – doi: 10.1116/j.scriptamat.2009.08.012.
  5. Zhou L., Liu H.J. Effect of 0.5 wt.% hydrogen addition on microstructural evolution of Ti–6Al–4V alloy in the friction stir welding and post-weld dehydrogenation process // Materials Characterization. – 2011. – Vol. 62, iss. 11. – P. 1036–1041. – DOI: 10.1116/j. matchar.2011.07.016.
  6. Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint / L.H. Wu, P. Xue, B.L. Xiao, Z.Y. Ma // Scripta Materialia. – 2016. – Vol. 122. – P. 26–30. – doi: 10.1116/j.scriptamat.2016.05.020.
  7. Surface modification of Ti–6Al–4V alloy via friction-stir processing: microstructure evolution and dry sliding wear performance / B. Li, Y. Shen, W. Hu, L. Luo // Surface and Coatings Technology. – 2014. – Vol. 239. – P. 160–170. – doi: 10.1016/j.surfcoat.2013.11.035.
  8. Microstructure evolution during friction stir welding of mill-annealed Ti-6Al-4V / A.L. Pilchak, W. Tang, H. Sahiner, A.P. Reynolds, J.C. Williams // Metallurgical and Materials Transactions A. – 2010. – Vol. 42, iss. 3. – P. 745–762. – doi: 10.1007/s11661-010-0439-4.
  9. A preliminary study of deformation behavior of friction stir welded Ti-6Al-4V / J. Wang, J. Su, R.S. Mishra, R. Xu, J.A. Baumann // Journal of Materials Engineering and Performance. – 2014. – Vol. 23, iss. 8. – P. 3027–3033. – doi: 10.1007/s11665-014-1075-8.
  10. Lippold J.C., Livingston J.J. Microstructure evolution during friction stir processing and hot torsion simulation of Ti-6Al-4V // Metallurgical and Materials Transactions A. – 2013. – Vol. 44, iss. 8. – P. 3815–3825. – doi: 10.1007/s11661-013-1764-1.
  11. Tool wear characteristics and effect on microstructure in Ti-6Al-4V friction stir welded joints / A. Fall, M. Fesharaki, A. Khodabandeh, M. Jahazi // Metals. – 2007. – Vol. 6, iss. 11. – P. 275. – doi: 10.3390/met6110275.
  12. Edwards P.D., Ramulu M. Comparative study of fatigue and fracture in friction stir and electron beam welds of 24mm thick titanium alloy Ti-6Al-4V // Fatigue and Fracture of Engineering Materials and Structures. – 2016. – Vol. 39, iss. 10. – P. 1226–1240. – doi: 10.1111/ffe.12434.
  13. Role of microstructure on the fatigue crack propagation behavior of a friction stir welded Ti–6Al–4V / Muzvidziwa, M., Okazaki, M., Suzuki, K., & Hirano, S. // Materials Science & Engineering A. – 2016. – Vol. 652. – P. 59–68. – doi: 10.1016/j.msea.2015.11.065.
  14. Yoon S., Ueji R., Fujii H. Effect of initial microstructure on Ti–6Al–4V joint by friction stir welding // Materials and Design. – 2015. – Vol. 88. – P. 1269–1276. – doi: 10.1016/j.matdes.2015.09.128.
  15. Wear of cobalt-based alloy tool during friction stir welding of Ti-6Al-4V Alloy / Y.S. Sato, S. Susukida, H. Kokawa, T. Omori, K. Ishida, S. Imano, S.H.C. Park, I. Sugimoto, S. Hirano // Proceedings of 11th International Symposium on Friction Stir Welding. – Cambridge, UK, 2016.
  16. Crystallography of transformed b microstructure in friction stir welded Ti–6Al–4V alloy / S. Mironov, Y. Zhang, Y.S. Sato, H. Kokawa // Scripta Materialia. – 2008. – Vol. 59, iss. 5. – P. 511–514. – doi: 10.1016/j.scriptamat.2008.04.038.
  17. Development of grain structure in b-phase field during friction stir welding of Ti–6Al–4V alloy / S. Mironov, Y. Zhang, Y.S. Sato, H. Kokawa // Scripta Materialia. – 2008. – Vol. 59, iss. 1. – P. 27–30. – doi: 10.1016/j.scriptamat.2008.04.014.
  18. Microstructural characteristics and mechanical properties of Ti–6Al–4V friction stir welds / Y. Zhang, Y.S. Sato, H. Kokawa, S.H.C. Park, S. Hirano // Materials Science & Engineering A. – 2008. – Vol. 485. – P. 448–455. – doi: 10.1016/j.msea.2007.08.051.
  19. Performance of iridium containing nickel base superalloy tool for friction stir welding of Ti-6Al-4V alloy / T. Nakazawa, K. Tanaka, K. Sakairi, Y.S. Sato, H. Kokawa, T. Omori, K. Ishida, S. Hirano // Proceedings of 11th International Symposium on Friction Stir Welding. – Cambridge, UK, 2016.
  20. Tool wear and its effect on microstructure and properties of friction stir processed Ti–6Al–4V / L.H. Wu, D. Wang, B.L. Xiao, Z.Y. Ma // Materials Chemistry and Physics. – 2014. – Vol. 146, iss. 3. – P. 512–522. – doi: 10.1016/j.matchemphys.2014.04.002.
  21. Fahrenholtz W.G. Thermodynamic analysis of ZrB2–SiC oxidation: formation of a SiC-depleted region // Journal of the American Ceramic Society. – 2007. – Vol. 90. – P. 143–148. – doi: 10.1111/j.1551-2916.2006.01329.x.
  22. Multiscale mechanism of fatigue fracture of Ti-6A1-4V titanium alloy within the mesomechanical space-time-energy approach / V.E. Panin, N.S. Surikova, A.M. Lider, Y.S. Bordulev, B.B. Ovechkin, R.R. Khayrullin, I.V. Vlasov // Physical Mesomechanics. – 2018. – Vol. 21, iss. 5. – P. 452–463. – doi: 10.1134/s1029959918050090.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».