Investigation of the Technology of Microdosed supply of Lubricant Compositions with Nanoparticles during Grinding of Heat-Resistant Ni-based with Additional Air Cooling

Cover Page

Cite item

Full Text

Abstract

Introduction. In terms of environmental issues, the most significant problem in the metal finishing process is the use of lubricating cooling fluids (coolant). As an alternative of coolant using in the world practice are integrating an environmentally determined engineering of minimum lubrication (MQL – minimum quantity lubrication). Though the use of MQL process in the abrasion with the highest contact temperatures is not effective enough. Due to this a set of measures has been suggested in the scientific community such as, the additional cooling action of the cutting area by cold air (CAMQL – cold air with minimum quantity lubrication). As part of our paper the researches of using these methods, both separately and in synthesis, in order to assessment of capability for increasing the MQL efficiency when grinding Ni-based alloy are carried out. The purpose of the work is to quantify the influence of the MQL and CAMQL input processes on the operational factors of the grinding process and the properties of a thin surface. Vegetable soy oil is used as a lubricant, including the addition of Al2O3 nanoparticles. Research methods. The surface roughness is controlled with Mitutoyo Surfest SJ-410 profilometr. Component cutting forces are measured using a six-component force-measuring complex Amti MC36-1000. Elemental analysis and surface morphology rating are carried out using a FEI Versa 3D LoVac dual-beam raster electron microscope with an X-ray microanalysis attachment. The contact potential difference is measured by atomic-force microscopy using the Kelvin’;s probe method. Results and discussion. The better application conditions for MQL and CAMQL are established, these are the dosing regimens of lubricating at 30 ml/h and the air low range for CAMQL equals to 12 m3/h. The measurement results of cutting forces showed the using of soy oil lubricant only is more effective for CAMQL. On addition of Al2O3 nanoparticles with an optimal concentration of 0.4 wt. % there is observed the dramatic decline of the cutting forces, in particular Py component (by 30 % relative to grinding process without coolant), and the force values are almost the same when using both MQL and CAMQL. The machined surface roughness is reduced averagely 1.5 times. While using lubricant compositions with nanoparticles, there is a tendency to lower the surface roughness values when grinding with CAMQL. The states research of a thin surface layer after grinding process showed the use of CAMQL, regardless of the lubricant type, provides reduction of surface oxidation and improvement of its properties. When using compositions with Al2O3 nanoparticles, the decrease of adhesive interaction traces of machine surface is observed.

About the authors

M. P. Artem

Email: greenmap@yandex.ru
Ph.D. (Engineering), Associate Professor, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University, 42a Engelsa Street, Volzhsky, 404121, Russian Federation, greenmap@yandex.ru

N. A. Vladimir

Email: vladim.nosenko2014@yandex.ru
D.Sc. (Engineering), Professor, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University, 42a Engelsa Street, Volzhsky, 404121, Russian Federation, vladim.nosenko2014@yandex.ru

References

  1. Role of frozen lubricant film on tribological behaviour and wear mechanisms in grinding / E. García, D. Méresse, I. Pombo, M. Dubar, J. Sánchez // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 82. – P. 1017–1027. – doi: 10.1007/s00170-015-7397-3.
  2. Reddy P.P., Ghosh A. Some critical issues in cryo-grinding by a vitrified bonded alumina wheel using liquid nitrogen jet // Journal of Materials Processing Technology. – 2016. – Vol. 229. – P. 329–337. – doi: 10.1016/j.jmatprotec.2015.09.040.
  3. Nguyen T. An assessment of the applicability of cold air and oil mist in surface grinding // Journal of Materials Processing Technology. – 2003. – Vol. 140. – P. 224–230. – doi: 10.1016/S0924-0136(03)00714-3.
  4. Choi H.Z., Lee S.W., Jeong H.D. The cooling effects of compressed cold air in cylindrical grinding with alumina and CBN wheels // Journal of Materials Processing Technology. – 2002. – Vol. 127. – P. 155–158. – doi: 10.1016/S0924-0136(02)00117-6.
  5. Improvement of surface grinding process performance of CK45 soft steel by minimum quantity lubrication (MQL) technique using compressed cold air jet from vortex tube / A. Saberi, A.R. Rahimi, H. Parsa, M. Ashrafijou, F. Rabiei // Journal of Cleaner Production. – 2016. – Vol. 131. – P. 728–738. – doi: 10.1016/j.jclepro.2016.04.104.
  6. Lee P.A. Study on thermal characteristics of micro-scale grinding process using nanofluid minimum quantity lubrication (MQL) // International Journal of Precision Engineering and Manufacturing. – 2015. – Vol. 16, N 9. – P. 1899–1909. – doi: 10.1007/s12541-015-0247-2.
  7. Shen B. Application of nanofluids in minimum quantity lubrication grinding // Tribology Transactions. – 2008. – Vol. 51. – P. 730–737. – doi: 10.1080/10402000802071277.
  8. Sharma A.K., Tiwari A.K., Dixit A.R. Mechanism of nanoparticles functioning and effects in machining processes: a review // Materials Today: Proceedings. – 2015. – Vol. 2, iss. 4–5. – P. 3539–3544. – doi: 10.1016/j.matpr.2015.07.331.
  9. Nanofluids as potential solution for minimum quantity lubrication: a review / R.R. Srikant, M.M.S. Prasad, M. Amrita, A.V. Sitaramaraju, P.V. Krishna // Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. – 2014. – Vol. 228, iss. 1. – P. 3–20. – doi: 10.1177/0954405413497939.
  10. Vasu V., Pradeep Kumar Reddy G. Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy // Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems. – 2011. – Vol. 225, iss. 1. – P. 3–16. – doi: 10.1177/1740349911427520.
  11. Крутикова А.А., Митрофанов А.П., Паршева К.А. Применение технологии подачи минимального количества смазки в охлажденном воздушном потоке при шлифовании жаропрочного сплава // Технология металлов. – 2019. – № 8. – С. 9–15. – doi: 10.31044/1684-2499-2019-8-0-9-15.
  12. Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding / J. Zhang, C. Li, Y. Zhang, M. Yang, D. Jia, Y. Hou, R. Li // The International Journal of Advanced Manufacturing Technology. – 2018. – Vol. 97. – P. 209–228. – doi: 10.1007/s00170-018-1936-7.
  13. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil / Y. Zhang, C. Li, D. Jia, D. Zhang, X. Zhang // Journal of Cleaner Production. – 2015. – Vol. 87. – P. 930–940. – doi: 10.1016/j.jclepro.2014.10.027.
  14. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL) / P.H. Lee, J.S. Nam, C. Li, S.W. Lee // International Journal of Precision Engineering and Manufacturing. – 2012. – Vol. 13, iss. 3. – P. 331–338. – doi: 10.1007/s12541-012-0042-2.
  15. Environment-friendly technological advancements to enhance the sustainability in surface grinding – a review / D. Manu, S.S. Vishal, S.D. Jasminder, S.G. Simranpreet // Journal of Cleaner Production. – 2018. – Vol. 197. – P. 218–231. – doi: 10.1016/j.jclepro.2018.05.280.
  16. Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding / D. Zhang, C. Li, D. Jia, Y. Zhang, X. Zhang // Chinese Journal of Aeronautics. – 2015. – Vol. 28, iss. 2. – P. 570–581. – doi: 10.1016/j.cja.2014.12.035.
  17. Cyclic oxidation behavior of IN 718 superalloy in air at high temperatures / K.A. Al-hatab, M.A. Al-bukhaiti, U. Krupp, M. Kantehm // Oxidation of Metals. – 2011. – Vol. 75, iss. 3–4. – P. 209–228. – doi: 10.1007/s11085-010-9230-6.
  18. SEM-EDS and XPS studies of the high temperature oxidation behaviour of Inconel 718 / F. Delaunay, C. Berthier, M. Lenglet, J.M. Lameille // Mikrochimica Acta. – 2000. – Vol. 132, iss. 2–4. – P. 337–343. – doi: 10.1007/s006040050027.
  19. Li W. Influences of tensile strain and strain rate on the electron work function of metals and alloys // Scripta Materialia. – 2006. – Vol. 54, iss. 5. – P. 921–924. – doi: 10.1016/j.scriptamat.2005.10.064.
  20. Hua G., Li D. Generic relation between the electron work function and Young’;s modulus of metals // Applied Physics Letters. – 2011. – Vol. 99, iss. 4. – P. 041907. – doi: 10.1063/1.3614475.
  21. Lu H. Electron work function – a promising guiding parameter for material design / H. Lu, Z. Liu, X. Yan, D. Li, L. Parent, H. Tian // Scientific Reports. – 2016. – Vol. 6. – P. 1–11. – doi: 10.1038/srep24366.
  22. Zhou Y., Lu J.Q., Qin W.G. Change in the electronic work function under different loading conditions // Materials Chemistry and Physics. – 2009. – Vol. 118. – P. 12–14. – doi: 10.1016/j.matchemphys.2009.07.062.
  23. Shiyi L., Hao L., Li D.Y. The relationship between the electron work function and friction behavior of passive alloys under different conditions // Applied Surface Science. – 2015. – Vol. 351. – P. 316–319. – doi: 10.1016/j.apsusc.2015.05.125.
  24. Wang J., Wang S.Q. Surface energy and work function of fcc and bcc crystals: density functional study // Surface Science. – 2014. – Vol. 630. – P. 216–224. – doi: 10.1016/j.susc.2014.08.017.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».